drag effect
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 51)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
pp. 2100138
Author(s):  
Yongjian Zhou ◽  
Tingwen Guo ◽  
Liyang Liao ◽  
Xianzhe Chen ◽  
Lei Han ◽  
...  
Keyword(s):  

Author(s):  
Dana Zöllner

Abstract The migration of grain boundaries and, therewith, the phenomenon of grain growth depend strongly on the annealing temperature. Generally, higher temperatures are associated with higher mobilities of the boundaries and therewith faster microstructural coarsening. In the present study, the influence of a strong temperature gradient on grain growth in thin films is investigated. To that aim, a modified three-dimensional Potts model algorithm is employed, where the annealing temperature changes with the thickness of the sample taking grain boundary mobility and energy into account. The resulting drag effect has serious consequences for the temporal and spatial evolution of the grain microstructure.


2021 ◽  
Vol 57 (6) ◽  
pp. 1-7
Author(s):  
Parinaz Sadri-Moshkenani ◽  
Mohammad Wahiduzzaman Khan ◽  
Md Shafiqul Islam ◽  
Eric Arturo Montoya ◽  
Ilya Krivorotov ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
◽  
Constantin Wassilieff

<p>In some nearly magnetic dilute alloys, in which the host and impurity are transition metals of similar electronic structure, the thermopower is observed to form a "giant" peak at about the spin fluctuation temperature Tsf deduced from resistivity measurements. Two explanations for these peaks have been postulated: the first is that the peaks are a diffusion thermopower component involving scattering off localized spin fluctuations (LSF) at the impurity sites; the second is that they are an LSF drag effect. We examine the thermopower and resistively of two nearly magnetic alloy systems: Rh(Fe) and Pt(Ni). In the first part of this thesis we describe measurements of the low temperature thermopower and resistivity of several Rh(Fe) alloys to clarify discrepancies in previous measurements and we show, by using a modified Nordheim-Gorter analysis, that the observed thermopower peaks are a diffusion and not a drag effect. In the second part of the thesis we describe measurements of the low temperature thermopower and resistivity of Pt (Ni), for which no previous data had been available. The Pt(Ni) samples are manufactured as thin, evaporated films on glass substrates. However, due to the difficulty encountered in controlling the very high residual resistivity of these samples, we are not able to draw definite conclusions regarding either the thermopower or the resistivity.</p>


2021 ◽  
Author(s):  
◽  
Constantin Wassilieff

<p>In some nearly magnetic dilute alloys, in which the host and impurity are transition metals of similar electronic structure, the thermopower is observed to form a "giant" peak at about the spin fluctuation temperature Tsf deduced from resistivity measurements. Two explanations for these peaks have been postulated: the first is that the peaks are a diffusion thermopower component involving scattering off localized spin fluctuations (LSF) at the impurity sites; the second is that they are an LSF drag effect. We examine the thermopower and resistively of two nearly magnetic alloy systems: Rh(Fe) and Pt(Ni). In the first part of this thesis we describe measurements of the low temperature thermopower and resistivity of several Rh(Fe) alloys to clarify discrepancies in previous measurements and we show, by using a modified Nordheim-Gorter analysis, that the observed thermopower peaks are a diffusion and not a drag effect. In the second part of the thesis we describe measurements of the low temperature thermopower and resistivity of Pt (Ni), for which no previous data had been available. The Pt(Ni) samples are manufactured as thin, evaporated films on glass substrates. However, due to the difficulty encountered in controlling the very high residual resistivity of these samples, we are not able to draw definite conclusions regarding either the thermopower or the resistivity.</p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2348
Author(s):  
R. K. Koju ◽  
Y. Mishin

Molecular dynamics (MD) simulations are applied to study solute drag by curvature-driven grain boundaries (GBs) in Cu–Ag solid solution. Although lattice diffusion is frozen on the MD timescale, the GB significantly accelerates the solute diffusion and alters the state of short-range order in lattice regions swept by its motion. The accelerated diffusion produces a nonuniform redistribution of the solute atoms in the form of GB clusters enhancing the solute drag by the Zener pinning mechanism. This finding points to an important role of lateral GB diffusion in the solute drag effect. A 1.5 at.%Ag alloying reduces the GB free energy by 10–20% while reducing the GB mobility coefficients by more than an order of magnitude. Given the greater impact of alloying on the GB mobility than on the capillary driving force, kinetic stabilization of nanomaterials against grain growth is likely to be more effective than thermodynamic stabilization aiming to reduce the GB free energy.


2021 ◽  
Vol 11 (1) ◽  
pp. 86-97
Author(s):  
Pastor Ignacio Achával ◽  
Carlos Leonardo Di Prinzio

The migration of a grain triple junction was studied on ice pure samples with bubbles at -2°C for almost 3 h. This work studies the interaction between Grain Boundary (GB) and bubbles. The evolution of the triple junction was recorded from successive photographs obtained from a LEICA® optical microscope. Simultaneously, numerical simulations of grain triple junction with mobile bubbles were carried out using Monte Carlo method with the following conditions: The bubbles in the bulk were kept immobile and those in the GB were allowed to move. In addition, mobile bubbles were forced to stay inside the GB. The simulations show that bubbles slow down the movement of the GB and of the triple junction. What’s more, the simulated triple junction obtained fits very well the experimental triple junction geometry, and the GB diffusivity values obtained coincide with those measured experimentally at the same temperature and reported by other authors. Finally, the drag effect of the mobile bubbles on the GB migration was verified.


Sign in / Sign up

Export Citation Format

Share Document