Characteristics of Pool Boiling Bubble Dynamics in Bead Packed Porous Structures

Author(s):  
Calvin H. Li ◽  
Ting Li ◽  
Paul Hodgins ◽  
G. P. Peterson

Spherical glass and copper beads have been used to create bead packed porous structures for an investigation of two-phase heat transfer bubble dynamics under geometric constraints. The results demonstrated a variety of bubble dynamics characteristics under a range of heating conditions. At low heat flux of 18.9 kW/m2, a single spherical bubble formed at nucleation sites of a heating surface and departed to the interstitial spaces of porous structure. When heat flux increased to 47 kW/m2, a single bubble grew into a Y shape between beads layers and connected with others to generate a horizontal vapor column. As heat flux reached 76.3 kW/m2, vertical vapor columns obtained strong momentum to form several major vapor escaping arteries, and glass beads were pushed upward by the vapor in the escaping arteries. According to Zuber’s hydrodynamics theory, choking will take place when the size of vapor columns reaches a certain value that is comparable to the critical hydrodynamic wavelength of the vapor column in plain surface pool boiling. The experimental and simulation results of this investigation illustrated that, under the geometric constrains of bead packed porous structures, similar characteristics had been induced to trigger the earlier occurrence of vapor column chocking inside porous structures. The bubble generation, growth, and detachment during the nucleate pool boiling heat transfer have been filmed, the heating surface temperatures and heat flux were recorded, and theoretical models have been employed to study bubble dynamic characteristics. Computer simulation results were combined with experimental observations to clarify the details of the vapor bubble growth process and the liquid water replenishing the inside of the porous structures. This investigation has clearly shown, with both experimental and computer simulation evidence, that the millimeter scale bead packed porous structures could greatly influence pool boiling heat transfer by forcing a single bubble to depart at a smaller size as compared to that in a plain surface situation at low heat flux situations, and could trigger the earlier occurrence of critical heat flux (CHF) by trapping the vapor into interstitial space and forming a vapor column net. The results also proved data for further development of theoretical models of pool boiling heat transfer in bead packed porous structures.

2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Calvin H. Li ◽  
Ting Li ◽  
Paul Hodgins ◽  
G. P. Peterson

Spherical glass and copper beads have been used to create bead packed porous structures for an investigation of two-phase heat transfer bubble dynamics under geometric constraints. The results demonstrated a variety of bubble dynamics characteristics under a range of heating conditions. The bubble generation, growth, and detachment during the nucleate pool boiling heat transfer have been filmed, the heating surface temperatures and heat flux were recorded, and theoretical models have been employed to study bubble dynamic characteristics. Computer simulation results were combined with experimental observations to clarify the details of the vapor bubble growth process and the liquid water replenishing the inside of the porous structures. This investigation has clearly shown, with both experimental and computer simulation evidence, that the millimeter scale bead packed porous structures could greatly influence pool boiling heat transfer by forcing a single bubble to depart at a smaller size, as compared with that in a plain surface situation at low heat flux situations, and could trigger the earlier occurrence of critical heat flux by trapping the vapor into interstitial space and forming a vapor column net at high heat flux situations. The results also proved data for further development of theoretical models of pool boiling heat transfer in bead packed porous structures.


1970 ◽  
Vol 92 (4) ◽  
pp. 635-640 ◽  
Author(s):  
G. M. Fuls ◽  
G. E. Geiger

It is an established phenomenon that bubbles can be stabilized in a vertically vibrating liquid column. The effect of bubble stabilization on the rate of pool boiling heat transfer is experimentally investigated. With the liquid and heating surface vibrating as a unit, the data indicates a decrease of up to 12 percent in the temperature difference necessary for a given heat flux within the range of frequencies from 200 to 300 cps. The experimental results and comparison with results of previous investigators show that the effect is unique and not due simply to the vibrations per se.


2017 ◽  
Vol 139 (11) ◽  
Author(s):  
Abdolali Khalili Sadaghiani ◽  
Ahmad Reza Motezakker ◽  
Alsan Volkan Özpınar ◽  
Gözde Özaydın İnce ◽  
Ali Koşar

New requirements for heat exchangers offered pool boiling heat transfer on structured and coated surfaces as one of the promising methods for effective heat removal. In this study, pool boiling experiments were conducted on polyhydroxyethylmethacrylate (pHEMA)-coated surfaces to investigate the effect of surface orientation on bubble dynamics and nucleate boiling heat transfer. pHEMA coatings with thicknesses of 50, 100, and 200 nm were deposited using the initiated chemical deposition (iCVD) method. De-ionized water was used as the working fluid. Experiments were performed on horizontal and inclined surfaces (inclination angles of 10 deg, 30 deg, 50 deg, and 70 deg) under the constant heat flux (ranging from 10 to 80 kW/m2) boundary condition. Obtained results were compared to their plain surface counterparts, and heat transfer enhancements were observed. Accordingly, it was observed that the bubble departure phenomenon was affected by heat flux and wall superheat on bare silicon surfaces, while the supply path of vapor altered the bubble departure process on pHEMA-coated surfaces. Furthermore, the surface orientation played a major role on bubble dynamics and could be considered as a mechanism for fast vapor removal from surfaces. Bubble coalescence and liquid replenishment on coated surfaces had a promising effect on heat transfer coefficient enhancement on coated surfaces. For horizontal surfaces, a maximum enhancement of 25% relative to the bare surface was achieved, while the maximum enhancement was 105% for the inclined coated surface under the optimum condition. iCVD was proven to be a practical method for coating surfaces for boiling heat transfer applications due to the obtained promising results.


NANO ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. 1950124
Author(s):  
Hao Zhang ◽  
Zeng-en Li ◽  
Shan Qing ◽  
Zhuangzhuang Jia ◽  
Jiarui Xu ◽  
...  

Nucleate pool boiling heat transfer experiments have been conducted to nanofluids on a horizontal cylinder tube under atmospheric pressure. The nanofluids are prepared by dispersing Al2O3 nanoparticles into distilled water at concentrations of 0.001, 0.01, 0.1, 1 and 2[Formula: see text]wt.% with or without sodium, 4-dodecylbenzenesulfonate (SDBS). The experimental results showed that: nanofluids at lower concentrations (0.001[Formula: see text]wt.% to 1[Formula: see text]wt.%) can obviously enhance the pool boiling heat transfer performance, but signs of deterioration can be observed at higher concentration (2[Formula: see text]wt.%). The presence of SDBS can obviously enhance the pool boiling heat transfer performance, and with the presence of SDBS, a maximum enhancement ratio of BHTC of 69.88%, and a maximum decrease ratio of super heat of 41.12% can be found in Group NS5 and NS4, respectively. The tube diameter and wall thickness of heating surface are the influential factors for boiling heat transfer coefficient. Besides, we find that Rohsenow formula failed to predict the characteristics of nanofluids. The mechanism study shows that: the decrease of surface tension, which leads to the decrease of bubble departure diameter, and the presence of agglomerates in nanofluids are the reasons for the enhanced pool boiling heat transfer performance. At higher concentration, particle deposition will lead to the decrease of distribution density of the vaporization core, and as a result of that, the boiling heat transfer performance will deteriorate.


Sign in / Sign up

Export Citation Format

Share Document