Melting, Vaporization and Resolidification in a Thin Gold Film Irradiated by Multiple Femtosecond Laser Pulses

Author(s):  
Yijin Mao ◽  
Yuwen Zhang ◽  
J. K. Chen
JETP Letters ◽  
2008 ◽  
Vol 88 (4) ◽  
pp. 261-263
Author(s):  
B. N. Mironov ◽  
S. A. Aseev ◽  
V. S. Makin ◽  
S. V. Chekalin ◽  
V. S. Letokhov

Author(s):  
Yijin Mao ◽  
Yuwen Zhang ◽  
J. K. Chen

Melting, vaporization, and resolidification in a gold thin film subject to multiple femtosecond laser pulses are numerically studied in the framework of the two-temperature model. The solid-liquid phase change is modeled using a kinetics controlled model that allows the interfacial temperature to deviate from the melting point. The kinetics controlled model also allows superheating in the solid phase during melting and undercooling in the liquid phase during resolidification. Superheating of the liquid phase caused by nonequilibrium evaporation of the liquid phase is modeled by adopting the wave hypothesis, instead of the Clausius–Clapeyron equation. The melting depth, ablation depth, and maximum temperature in both the liquid and solid are investigated and the result is compared with that from the Clausius–Clapeyron equation based vaporization model. The vaporization wave model predicts a much higher vaporization speed, which leads to a deeper ablation depth. The relationship between laser processing parameters, including pulse separation time and pulse number, and the phase change effect are also studied. It is found that a longer separation time and larger pulse number will cause lower maximum temperature within the gold film and lower depths of melting and ablation.


2014 ◽  
Vol 41 (5) ◽  
pp. 0502005
Author(s):  
杨青 Yang Qing ◽  
杜广庆 Du Guangqing ◽  
陈烽 Chen Feng ◽  
吴艳敏 Wu Yanmin ◽  
司金海 Si Jinhai ◽  
...  

2003 ◽  
Vol 780 ◽  
Author(s):  
R. Houbertz ◽  
J. Schulz ◽  
L. Fröhlich ◽  
G. Domann ◽  
M. Popall ◽  
...  

AbstractReal 3-D sub-νm lithography was performed with two-photon polymerization (2PP) using inorganic-organic hybrid polymer (ORMOCER®) resins. The hybrid polymers were synthesized by hydrolysis/polycondensation reactions (modified sol-gel synthesis) which allows one to tailor their material properties towards the respective applications, i.e., dielectrics, optics or passivation. Due to their photosensitive organic functionalities, ORMOCER®s can be patterned by conventional photo-lithography as well as by femtosecond laser pulses at 780 nm. This results in polymerized (solid) structures where the non-polymerized parts can be removed by conventional developers.ORMOCER® structures as small as 200 nm or even below were generated by 2PP of the resins using femtosecond laser pulses. It is demonstrated that ORMOCER®s have the potential to be used in components or devices built up by nm-scale structures such as, e.g., photonic crystals. Aspects of the materials in conjunction to the applied technology are discussed.


Author(s):  
K. H. Leong ◽  
T. Y. Plew ◽  
R. L. Maynard ◽  
A. A. Said ◽  
L. A. Walker

Author(s):  
V. Pouget ◽  
E. Faraud ◽  
K. Shao ◽  
S. Jonathas ◽  
D. Horain ◽  
...  

Abstract This paper presents the use of pulsed laser stimulation with picosecond and femtosecond laser pulses. We first discuss the resolution improvement that can be expected when using ultrashort laser pulses. Two case studies are then presented to illustrate the possibilities of the pulsed laser photoelectric stimulation in picosecond single-photon and femtosecond two-photon modes.


Sign in / Sign up

Export Citation Format

Share Document