A Two-Dimensional Cylindrical Transient Conduction Solution Using Green’s Functions

Author(s):  
Robert L. McMasters ◽  
James V. Beck

There are many applications for problems involving thermal conduction in two-dimensional cylindrical objects. Experiments involving thermal parameter estimation are a prime example, including cylindrical objects suddenly placed in hot or cold environments. In a parameter estimation application, the direct solution must be run iteratively in order to obtain convergence with the measured temperature history by changing the thermal parameters. For this reason, commercial conduction codes are often inconvenient to use. It is often practical to generate numerical solutions for such a test, but verification of custom-made numerical solutions is important in order to assure accuracy. The present work involves the generation of an exact solution using Green’s functions where the principle of superposition is employed in combining a one-dimensional cylindrical case with a one-dimensional Cartesian case to provide a temperature solution for a two-dimensional cylindrical. Green’s functions are employed in this solution in order to simplify the process, taking advantage of the modular nature of these superimposed components. The exact solutions involve infinite series of Bessel functions and trigonometric functions but these series sometimes converge using only a few terms. Eigenvalues must be determined using Bessel functions and trigonometric functions. The accuracy of the solutions generated using these series is extremely high, being verifiable to eight or ten significant digits. Two examples of the solutions are shown as part of this work for a family of thermal parameters. The first case involves a uniform initial condition and homogeneous convective boundary conditions on all of the surfaces of the cylinder. The second case involves a nonhomogeneous convective boundary condition on a part of one of the planar faces of the cylinder and homogeneous convective boundary conditions elsewhere with zero initial conditions.

2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Robert L. McMasters ◽  
James V. Beck

There are many applications for problems involving thermal conduction in two-dimensional (2D) cylindrical objects. Experiments involving thermal parameter estimation are a prime example, including cylindrical objects suddenly placed in hot or cold environments. In a parameter estimation application, the direct solution must be run iteratively in order to obtain convergence with the measured temperature history by changing the thermal parameters. For this reason, commercial conduction codes are often inconvenient to use. It is often practical to generate numerical solutions for such a test, but verification of custom-made numerical solutions is important in order to assure accuracy. The present work involves the generation of an exact solution using Green's functions where the principle of superposition is employed in combining a one-dimensional (1D) cylindrical case with a 1D Cartesian case to provide a temperature solution for a 2D cylindrical. Green's functions are employed in this solution in order to simplify the process, taking advantage of the modular nature of these superimposed components. The exact solutions involve infinite series of Bessel functions and trigonometric functions but these series sometimes converge using only a few terms. Eigenvalues must be determined using Bessel functions and trigonometric functions. The accuracy of the solutions generated using these series is extremely high, being verifiable to eight or ten significant digits. Two examples of the solutions are shown as part of this work for a family of thermal parameters. The first case involves a uniform initial condition and homogeneous convective boundary conditions on all of the surfaces of the cylinder. The second case involves a nonhomogeneous convective boundary condition on a part of one of the planar faces of the cylinder and homogeneous convective boundary conditions elsewhere with zero initial conditions.


Author(s):  
Robert L. McMasters ◽  
James V. Beck

The analytical solution for the problem of transient thermal conduction with solid body movement is developed for a parallelepiped with convective boundary conditions. An effective transformation scheme is used to eliminate the flow terms. The solution uses Green’s functions containing convolution-type integrals, which involve integration over a dummy time, referred to as “cotime.” Two types of Green’s functions are used: one for short cotimes comes from the Laplace transform and the other for long cotimes from the method of separation of variables. A primary advantage of this method is that it incorporates internal verification of the numerical results by varying the partition time between the short and long components. In some cases, the long time solution requires a zeroth term in the summation, which does not occur when solid body motion is not present. The existence of this zeroth term depends upon the magnitude of the heat transfer coefficient associated with the convective boundary condition. An example is given for a two-dimensional case involving both prescribed temperature and convective boundary conditions. Comprehensive tables are also provided for the nine possible combinations of boundary conditions in each dimension.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Robert L. McMasters ◽  
James V. Beck

The analytical solution for the problem of transient thermal conduction with solid body movement is developed for a parallelepiped with convective boundary conditions. An effective transformation scheme is used to eliminate the flow terms. The solution uses Green’s functions containing convolution-type integrals, which involve integration over a dummy time, referred to as “cotime.” Two types of Green’s functions are used: one for short cotimes comes from the Laplace transform and the other for long cotimes from the method of separation of variables. A primary advantage of this method is that it incorporates internal verification of the numerical results by varying the partition time between the short and long components. In some cases, the long-time solution requires a zeroth term in the summation, which does not occur when solid body motion is not present. The existence of this zeroth term depends on the magnitude of the heat transfer coefficient associated with the convective boundary condition. An example is given for a two-dimensional case involving both prescribed temperature and convective boundary conditions. Comprehensive tables are also provided for the nine possible combinations of boundary conditions in each dimension.


Author(s):  
Guilherme Ramalho Costa ◽  
José Aguiar santos junior ◽  
José Ricardo Ferreira Oliveira ◽  
Jefferson Gomes do Nascimento ◽  
Gilmar Guimaraes

2018 ◽  
Vol 39 (2) ◽  
pp. 607-625 ◽  
Author(s):  
Qiang Du ◽  
Yunzhe Tao ◽  
Xiaochuan Tian ◽  
Jiang Yang

AbstractNonlocal diffusion equations and their numerical approximations have attracted much attention in the literature as nonlocal modeling becomes popular in various applications. This paper continues the study of robust discretization schemes for the numerical solution of nonlocal models. In particular, we present quadrature-based finite difference approximations of some linear nonlocal diffusion equations in multidimensions. These approximations are able to preserve various nice properties of the nonlocal continuum models such as the maximum principle and they are shown to be asymptotically compatible in the sense that as the nonlocality vanishes, the numerical solutions can give consistent local limits. The approximation errors are proved to be of optimal order in both nonlocal and asymptotically local settings. The numerical schemes involve a unique design of quadrature weights that reflect the multidimensional nature and require technical estimates on nonconventional divided differences for their numerical analysis. We also study numerical approximations of nonlocal Green’s functions associated with nonlocal models. Unlike their local counterparts, nonlocal Green’s functions might become singular measures that are not well defined pointwise. We demonstrate how to combine a splitting technique with the asymptotically compatible schemes to provide effective numerical approximations of these singular measures.


2019 ◽  
Vol 24 (1) ◽  
pp. 26 ◽  
Author(s):  
Sergey Davydov ◽  
Andrei Zemskov ◽  
Elena Akhmetova

This article presents an algorithm for solving the unsteady problem of one-dimensional coupled thermoelastic diffusion perturbations propagation in a multicomponent isotropic half-space, as a result of surface and bulk external effects. One-dimensional physico-mechanical processes, in a continuum, have been described by a local-equilibrium model, which included the coupled linear equations of an elastic medium motion, heat transfer, and mass transfer. The unknown functions of displacement, temperature, and concentration increments were sought in the integral form, which was a convolution of the surface and bulk Green’s functions and external effects functions. The Laplace transform on time and the Fourier sine and cosine transforms on the coordinate were used to find the Green’s functions. The obtained Green’s functions was analyzed. Test calculations were performed on the examples of some technological processes.


Geophysics ◽  
1975 ◽  
Vol 40 (2) ◽  
pp. 309-324 ◽  
Author(s):  
Gerald W. Hohmann

The induced polarization (IP) and electromagnetic (EM) responses of a three‐dimensional body in the earth can be calculated using an integral equation solution. The problem is formulated by replacing the body by a volume of polarization or scattering current. The integral equation is reduced to a matrix equation, which is solved numerically for the electric field in the body. Then the electric and magnetic fields outside the inhomogeneity can be found by integrating the appropriate dyadic Green’s functions over the scattering current. Because half‐space Green’s functions are used, it is only necessary to solve for scattering currents in the body—not throughout the earth. Numerical results for a number of practical cases show, for example, that for moderate conductivity contrasts the dipole‐dipole IP response of a body five units in strike length approximates that of a two‐dimensional body. Moving an IP line off the center of a body produces an effect similar to that of increasing the depth. IP response varies significantly with conductivity contrast; the peak response occurs at higher contrasts for two‐dimensional bodies than for bodies of limited length. Very conductive bodies can produce negative IP response due to EM induction. An electrically polarizable body produces a small magnetic field, so that it is possible to measure IP with a sensitive magnetometer. Calculations show that horizontal loop EM response is enhanced when the background resistivity in the earth is reduced, thus confirming scale model results.


Sign in / Sign up

Export Citation Format

Share Document