Reduced Chemical Kinetic Models of C1 - C4 Alcohols Using the Alternate Species Elimination Approach

Author(s):  
Apeng Zhou ◽  
Shirin Jouzdani ◽  
Ben Akih-Kumgeh

Abstract This study presents four separate reduced chemical kinetic models of methanol/ethanol, propanol isomers, n- and iso-butanol, and n- and s-butanol isomers, derived from a comprehensive chemical kinetic model of C1-C5 alcohols using the Alternate Species Elimination approach. It is motivated by complexity of the detailed model (comprising 600 species and 4100 elementary reactions) and the need for simpler kinetic models for analysis of combustion of smaller alcohols. The reduced models are obtained on the basis of ignition delay time simulations with imposed thresholds on the resulting normalized changes in ignition delay times. The following reduced models are obtained: methanol/ethanol: 38 species and 197 reactions; propanol isomers: 68 species and 419 reactions; n- and iso-butanol: 140 species and 745 reactions; and n- and s-butanol: 134 species and 739 reactions. Predictions of ignition delay times by the reduced models are found to be in good with the detailed models. The reduced models are further tested against other relevant combustion properties. These properties include burning velocities of laminar premixed flames, global pyrolysis time scales, and heat release timing in Homogeneous Charge Compression Ignition engines. This verification shows that reduced models can replace the comprehensive model in combustion analysis without loss of predictive performance. The reduced models can also serve as starting models for developing combined chemical kinetic models of gasoline/diesel and alcohol blends.

2015 ◽  
Vol 29 (7) ◽  
pp. 4557-4566 ◽  
Author(s):  
Erjiang Hu ◽  
Yizhen Chen ◽  
Zihang Zhang ◽  
Xiaotian Li ◽  
Yu Cheng ◽  
...  

Author(s):  
Marina Braun-Unkhoff ◽  
Jens Dembowski ◽  
Jürgen Herzler ◽  
Jürgen Karle ◽  
Clemens Naumann ◽  
...  

In response to the limited resources of fossil fuels as well as to their combustion contributing to global warming through CO2 emissions, it is currently discussed to which extent future energy demands can be satisfied by using biomass and biogenic by-products, e.g., by cofiring. However, new concepts and new unconventional fuels for electric power generation require a re-investigation of at least the gas turbine burner if not the gas turbine itself to ensure a safe operation and a maximum range in tolerating fuel variations and combustion conditions. Within this context, alcohols, in particular, ethanol, are of high interest as alternative fuel. Presently, the use of ethanol for power generation—in decentralized (microgas turbines) or centralized gas turbine units, neat, or cofired with gaseous fuels like natural gas (NG) and biogas—is discussed. Chemical kinetic modeling has become an important tool for interpreting and understanding the combustion phenomena observed, for example, focusing on heat release (burning velocities) and reactivity (ignition delay times). Furthermore, a chemical kinetic reaction model validated by relevant experiments performed within a large parameter range allows a more sophisticated computer assisted design of burners as well as of combustion chambers, when used within computational fluid dynamics (CFD) codes. Therefore, a detailed experimental and modeling study of ethanol cofiring to NG will be presented focusing on two major combustion properties within a relevant parameter range: (i) ignition delay times measured in a shock tube device, at ambient (p = 1 bar) and elevated (p = 4 bar) pressures, for lean (φ = 0.5) and stoichiometric fuel–air mixtures, and (ii) laminar flame speed data at several preheat temperatures, also for ambient and elevated pressure, gathered from literature. Chemical kinetic modeling will be used for an in-depth characterization of ignition delays and flame speeds at technical relevant conditions. An extensive database will be presented identifying the characteristic differences of the combustion properties of NG, ethanol, and ethanol cofired to NG.


Author(s):  
Torsten Methling ◽  
Sandra Richter ◽  
Trupti Kathrotia ◽  
Marina Braun-Unkhoff ◽  
Clemens Naumann ◽  
...  

Over the last years, global concerns about energy security and climate change have resulted in many efforts focusing on the potential utilization of non-petroleum-based, i.e. bio-derived, fuels. In this context, n-butanol has recently received high attention because it can be produced sustainably. A comprehensive knowledge about its combustion properties is inevitable to ensure an efficient and smart use of n-butanol if selected as a future energy carrier. In the present work, two major combustion characteristics, here laminar flame speeds applying the cone-angle method and ignition delay times applying the shock tube technique, have been studied, experimentally and by modeling exploiting detailed chemical kinetic reaction models, at ambient and elevated pressures. The in-house reaction model was constructed applying the RMG-method. A linear transformation method recently developed, linTM, was exploited to generate a reduced reaction model needed for an efficient, comprehensive parametric study of the combustion behavior of n-butanol/hydrocarbon mixtures. All experimental data were found to agree with the model predictions of the in-house reaction model, for all temperatures, pressures, and fuel-air ratios. On the other hand, calculations using reaction models from the open literature mostly overpredict the measured ignition delay times by about a factor of two. The results are compared to those of ethanol, with ignition delay times very similar and laminar flame speeds of n-butanol slightly lower, at atmospheric pressure.


Author(s):  
Xuan Zheng ◽  
Shirin Jouzdani ◽  
Benjamin Akih-Kumgeh

Abstract Methane (CH4) and bio alcohols have different ignition properties. These have been extensively studied and the resulting experimental data have been used to validate chemical kinetic models. Methane is the main component of natural gas, which is of interest because of its relative availability and lower emissions compared to other hydrocarbon fuels. Given growing interest in fuel-flexible systems, there can be situations in which the combustion properties of natural gas need to be modified by adding biofuels such as bio alcohols. This can occur in dual-fuel internal combustion engines or gas turbines with dual-fuel capabilities. The combustion behavior of such blends can be understood by studying the auto ignition properties in fundamental combustion experiments. Studies of the ignition of such blends are very limited in the literature. In this work, the auto ignition of methane and bio alcohol fuel blends is investigated using a shock tube facility. The chosen bio alcohols are ethanol (C2H5OH) and n-propanol (NC3H7OH). Experiments are carried out at 3 atm and 10 atm for stoichiometric and lean mixtures of fuel, oxygen, and argon. The ignition delay times of the pure fuels are first established at conditions of constant oxygen concentration and comparable pressures. The ignition delay times of blends with 50% methane are then measured. The pyrolysis kinetics of the blends is further explored by measuring CO formation during pyrolysis of the alcohol and methane–alcohol blends. The resulting experimental data are compared with the predictions of selected chemical kinetic models to establish the ability of these models to predict the disproportionate enhancement of methane ignition by the added alcohol.


Author(s):  
Xuan Zheng ◽  
Shirin Jouzdani ◽  
Benjamin Akih-Kumgeh

Abstract Methane (CH4) and bio alcohols have different ignition properties. These have been extensively studied and the resulting experimental data have been used to validate chemical kinetic models. Methane is the main component of natural gas, which is of interest because of its relative availability and lower emissions compared to other hydrocarbon fuels. Given growing interest in fuel-flexible systems, there can be situations in which the combustion properties of natural gas need to be modified by adding biofuels, such as bio alcohols. This can occur in dual fuel internal combustion engines or gas turbines with dual fuel capabilities. The combustion behavior of such blends can be understood by studying the auto ignition properties in fundamental combustion experiments. Studies of the ignition of such blends are very limited in the literature. In this work, the auto ignition of methane and bio alcohol fuel blends is investigated using a shock tube facility. The chosen bio alcohols are ethanol (C2H5OH) and n-propanol (NC3H7OH). Experiments are carried out at 3 atm and 10 atm for stoichiometric and lean mixtures of fuel, oxygen, and argon. The ignition delay times of the pure fuels are first established at conditions of constant oxygen concentration and comparable pressures. The ignition delay times of blends with 50% methane are then measured. The pyrolysis kinetics of the blends is further explored by measuring CO formation during pyrolysis of the alcohol and methane-alcohol blends. The resulting experimental data are compared with the predictions of selected chemical kinetic models to establish the ability of these models to predict the disproportionate enhancement of methane ignition by the added alcohol.


Author(s):  
Jürgen Herzler ◽  
Julia Herbst ◽  
Thomas Kick ◽  
Clemens Naumann ◽  
Marina Braun-Unkhoff ◽  
...  

Fuels from low quality feedstock such as biomass and biomass residues are currently discussed with respect to their potential to contribute to a more sustainable electrical power supply. In the present work, we report on the study of generic representative gas mixtures stemming from the gasification of different feedstock, from wood and algae. Two major combustion properties — burning velocities and ignition delay times — were measured for different parameters: (i) for two pressures −1 bar and 3 bar – at a constant preheat temperature T0 = 373 K, to determine burning velocities by applying the cone angle method; and (ii) for elevated pressures — up to 16 bar — in the temperature range between about 1000 and 2000 K, at fuel-equivalence ratios φ of 0.5 and 1.0, to obtain ignition delay times by applying the shock tube method. Additional studies performed in our group on gas mixtures of natural gas, methane, and hydrogen were also taken into account -as major components of biogenic gas mixtures. It was found that the reaction behavior of the wood gasification product (N2, CO, H2, CO2, CH4) is mainly determined by its H2 content, besides CH4; methane determines the kinetic behavior of the algae fermentation product (CH4, CO2, N2) due to its relatively high amount. Detailed chemical kinetic reaction models were used to predict the measured data. The trends and main features were captured by predictions applying different reaction models. The agreement of the experiments and the predictions is dependent on the pressure range.


Author(s):  
Jürgen Herzler ◽  
Julia Herbst ◽  
Thomas Kick ◽  
Clemens Naumann ◽  
Marina Braun-Unkhoff ◽  
...  

Fuels from low quality feedstock such as biomass and biomass residues are currently discussed with respect to their potential to contribute to a more sustainable electrical power supply. In the present work, we report on the study of generic representative gas mixtures stemming from the gasification of different feedstock, from wood and algae. Two major combustion properties—burning velocities and ignition delay times—were measured for different parameters: (i) for two pressures—1 bar and 3 bar—at a constant preheat temperature T0 = 373 K, to determine burning velocities by applying the cone angle method; and (ii) for elevated pressures—up to 16 bar—in the temperature range between about 1000 and 2000 K, at fuel-equivalence ratios φ of 0.5 and 1.0, to obtain ignition delay times by applying the shock tube method. Additional studies performed in our group on gas mixtures of natural gas, methane, and hydrogen were also taken into account as major components of biogenic gas mixtures. It was found that the reaction behavior of the wood gasification product (N2, CO, H2, CO2, CH4) is mainly determined by its H2 content, besides CH4; methane determines the kinetic behavior of the algae fermentation product (CH4, CO2, N2) due to its relatively high amount. Detailed chemical kinetic reaction models were used to predict the measured data. The trends and main features were captured by predictions applying different reaction models. The agreement of the experiments and the predictions is dependent on the pressure range.


Author(s):  
Marina Braun-Unkhoff ◽  
Jens Dembowski ◽  
Jürgen Herzler ◽  
Jürgen Karle ◽  
Clemens Naumann ◽  
...  

In response to the limited resources of fossil fuels as well as to their combustion contributing to global warming through CO2 emissions, it is currently discussed to which extent future energy demands can be satisfied by using biomass and biogenic by-products, e.g. by co-firing. However, new concepts and new unconventional fuels for electric power generation require a re-investigation of at least the gas turbine burner if not the gas turbine itself to ensure a safe operation and a maximum range in tolerating fuel variations and combustion conditions. Within this context, alcohols, in particular ethanol, are of high interest as alternative fuel. Presently, the use of ethanol for power generation — in decentralized (micro gas turbines) or centralized gas turbine units, neat, or co-fired with gaseous fuels like natural gas and biogas — is discussed, besides its role within the transport sector. Chemical kinetic modeling has become an important tool for interpreting and understanding the combustion phenomena observed; for example, focusing on heat release (burning velocities) and reactivity (ignition delay times). Furthermore, a chemical kinetic reaction model validated by relevant experiments performed within a large parameter range allows a more sophisticated computer assisted design of burners as well as of combustion chambers, when used within CFD (computational fluid dynamics) codes. Therefore, a detailed experimental and modeling study of ethanol co-firing to natural gas will be presented focusing on two major combustion properties within a relevant parameter range: (i) ignition delay times measured in a shock tube device, at ambient (p = 1 bar) and elevated (p = 4 bar) pressures, for lean (φ = 0.5) and stoichiometric fuel-air mixtures, and (ii) laminar flame speed data at several preheat temperatures, also for ambient and elevated pressure, gathered from literature. Chemical kinetic modeling will be used for an in-depth characterization of ignition delays and flame speeds at technical relevant conditions. An extensive database will be presented identifying the characteristic differences of the combustion properties of natural gas, ethanol, and ethanol co-fired to natural gas.


Author(s):  
Torsten Methling ◽  
Sandra Richter ◽  
Trupti Kathrotia ◽  
Marina Braun-Unkhoff ◽  
Clemens Naumann ◽  
...  

Over the last years, global concerns about energy security and climate change have resulted in many efforts focusing on the potential utilization of nonpetroleum-based, i.e., bioderived, fuels. In this context, n-butanol has recently received high attention because it can be produced sustainably. A comprehensive knowledge about its combustion properties is inevitable to ensure an efficient and smart use of n-butanol if selected as a future energy carrier. In the present work, two major combustion characteristics, here laminar flame speeds applying the cone-angle method and ignition delay times applying the shock tube technique, have been studied, experimentally, and by modeling exploiting detailed chemical kinetic reaction models, at ambient and elevated pressures. The in-house reaction model was constructed applying the reaction model generation (RMG)-method. A linear transformation method recently developed, linTM, was exploited to generate a reduced reaction model needed for an efficient, comprehensive parametric study of the combustion behavior of n-butanol-hydrocarbon mixtures. All experimental data were found to agree with the model predictions of the in-house reaction model, for all temperatures, pressures, and fuel-air ratios. On the other hand, calculations using reaction models from the open literature mostly overpredict the measured ignition delay times by about a factor of two. The results are compared to those of ethanol, with ignition delay times very similar and laminar flame speeds of n-butanol slightly lower, at atmospheric pressure.


Sign in / Sign up

Export Citation Format

Share Document