Development of a Computer Simulation Technique for Predicting Heat Transfer in Multiphase Liquid-Particle Flow Systems

Author(s):  
Kevin F. Malone ◽  
Bao H. Xu ◽  
Michael Fairweather

Many of the highly active waste liquors that result from the reprocessing of spent nuclear fuel contain particulate solids of various materials. Operations for safe processing, handling and intermediate storage of these wastes often pose significant technical challenges due to the need for effective cooling systems to remove the heat generated by the radioactive solids. The multiscale complexity of liquid-particle flow systems is such that investigation and prediction of their heat transfer characteristics based on experimental studies is a difficult task. Fortunately, the increasing availability of cheap computing power means that predictive simulation tools may be able to provide a means to investigate these systems without the need for expensive pilot studies. In this work we describe the development of a Combined Continuum and Discrete Model (CCDM) for predicting the heat transfer behaviour of systems of particles suspended in liquids.

Author(s):  
Aleksandr S. MYAKOCHIN ◽  
Petr V. NIKITIN ◽  
Sergey Yu. POBEREZHSKIY ◽  
Anna A. SHKURATENKO

The paper presents a method, tools and a newly developed algorithm for experimentally determining heat transfer coefficients in organic liquids and solutions. This work is made relevant by the problem of development of a new generation of aerospace technology. In this connection, improvements have been made to the pulse method of determining heat transfer coefficients that is based on the use of a micron-thick film sensor. The measurement setup was modified. A math model was constructed for the measuring sensor. Algorithms were developed for conducting the experiment and processing measurement results to determine heat transfer coefficients. Experimental uncertainties were analyzed. The paper provides results of experimental studies on certain organic liquids. The authors believe that the material presented in the paper will find application in research conducted at research institutions, engineering offices and universities, among researches, postgraduates and students. Key words: thermal and physical characteristics, organic liquids and their solutions, film-type electrical resistor, thin-film temperature sensor, voltage pulse, resistance thermometer, irregular heat transfer regime.


2021 ◽  
Author(s):  
M. P. Dhanishk ◽  
P. Selvakumar ◽  
V. Ashwin ◽  
P. N. ArunKumar

2016 ◽  
Vol 50 (3) ◽  
pp. 318-322 ◽  
Author(s):  
V. A. Sukhanov ◽  
A. P. Bezukhov ◽  
I. A. Bogov ◽  
V. V. Tolmachev

Author(s):  
Amit Gupta ◽  
Xuan Wu ◽  
Ranganathan Kumar

This study discusses the merits of various physical mechanisms that are responsible for enhancing the heat transfer in nanofluids. Experimental studies have cemented the claim that ‘seeding’ liquids with nanoparticles can increase the thermal conductivity of the nanofluid by up to 40% for metallic and oxide nanoparticles dispersed in a base liquid. Experiments have also shown that the rise in conductivity of the nanofluid is highly dependent on the size and concentration of the nanoparticles. On the theoretical side, traditional models like Maxwell or Hamilton-Crosser models cannot explain this unusually high heat transfer. Several mechanisms have been postulated in the literature such as Brownian motion, thermal diffusion in nanoparticles and thermal interaction of nanoparticles with the surrounding fluid, the formation of an ordered liquid layer on the surface of the nanoparticle and microconvection. This study concentrates on 3 possible mechanisms: Brownian dynamics, microconvection and lattice vibration of nanoparticles in the fluid. By considering two nanofluids, copper particles dispersed in ethylene glycol, and silica in water, it is determined that translational Brownian motion of the nanoparticles, presence of an interparticle potential and the microconvection heat transfer are mechanisms that play only a smaller role in the enhancement of thermal conductivity. On the other hand, the lattice vibrations, determined by molecular dynamics simulations show a great deal of promise in increasing the thermal conductivity by as much as 23%. In a simplistic sense, the lattice vibration can be regarded as a means to simulate the phononic transport from solid to liquid at the interface.


1986 ◽  
Vol 9 (3) ◽  
pp. 349-363 ◽  
Author(s):  
M. N. Oğuztöreli ◽  
M. P. duPlessis ◽  
B. Özüm

2018 ◽  
Vol 916 ◽  
pp. 221-225
Author(s):  
Ji Zu Lv ◽  
Liang Yu Li ◽  
Cheng Zhi Hu ◽  
Min Li Bai ◽  
Sheng Nan Chang ◽  
...  

Nanofluids is an innovative study of nanotechnology applied to the traditional field of thermal engineering. It refers to the metal or non-metallic nanopowder was dispersed into water, alcohol, oil and other traditional heat transfer medium, to prepared as a new heat transfer medium with high thermal conductivity. The role of nanofluids in strengthening heat transfer has been confirmed by a large number of experimental studies. Its heat transfer mechanism is mainly divided into two aspects. On the one hand, the addition of nanoparticles enhances the thermal conductivity. On the other hand, due to the interaction between the nanoparticles and base fluid causing the changes in the flow characteristics, which is also the main factor affecting the heat transfer of nanofluids. Therefore, a intensive study on the flow characteristics of nanofluids will make the study of heat transfer more meaningful. In this experiment, the flow characteristics of SiO2-water nanofluids in two-dimensional backward step flow are quantitatively studied by PIV. The results show that under the same Reynolds number, the turbulence of nanofluids is larger than that of pure water. With the increase of nanofluids volume fraction, the flow characteristics are constantly changing. The quantitative analysis proved that the nanofluids disturbance was enhanced compared with the base liquid, which resulting in the heat transfer enhancement.


Sign in / Sign up

Export Citation Format

Share Document