The Treatment of Uncertainty in Performance Assessment and Safety Case Development

Author(s):  
D. A. Galson ◽  
A. Khursheed

This paper presents the results of a review of the treatment of uncertainty in performance assessment (PA) and safety-case development, carried out as part of the European Commission (EC) project PAMINA (Performance Assessment Methodologies IN Application to Guide the Development of the Safety Case). Information on the treatment of uncertainties was gathered from PAMINA participants and several other organisations using a questionnaire, and via a limited wider review of the literature. The questionnaire responses obtained represent 16 disposal programmes in 13 countries, including all of the countries with advanced programmes to implement deep geological disposal, allowing the review to give wide coverage of global activity. A two-day workshop was held in Brussels in March 2007, in which PAMINA participants reviewed an initial document which summarised the questionnaire results. Work plans were formulated for the remainder of the PAMINA programme. The 16 programmes represented are at diverse phases of maturity: four are at the conceptual development or feasibility stage, seven are at the site selection or site characterisation stage, two are at the licensing stage, one is at the construction stage, one has an operational repository, and one is at the decommissioning/closure stage. There is also wide variation in the development of regulations concerning the treatment of uncertainty for deep geological disposal of radioactive waste, with several countries having no specific regulations. The review indicates that there is a high level of consensus with respect to the nature of uncertainties in PAs and how they should be classified, although this is sometimes masked by variations in terminology and differences in the way uncertainties are treated in programmes. A system of classification is set out in this review, with reference to the nature of uncertainties. The review discusses how the principal classes of uncertainty are treated in PAs and safety cases. While nearly all programmes treat parameter and scenario uncertainties, some do not treat conceptual model uncertainties explicitly. Respondents expressed familiarity with sensitivity-analysis techniques, and clearly understand the difference between these and uncertainty analysis. It is less clear how widespread the use of sensitivity analysis is, especially formal mathematical schemes. Almost no organisations identified uncertainties that may challenge programmes, suggesting a high level of confidence in their ability to site and design deep geological disposal facilities so as to manage uncertainties effectively. However, respondents variously identified the engineered barrier system, the geosphere, the biosphere, and future human intrusion as key sources of uncertainty that require further investigation. Responses on the issue of communicating uncertainties were patchy: some respondents professed to have little experience in this area, whereas others chose not to answer the question. Some restricted themselves to discussing communication with regulators. Only a few programmes have gone as far as commissioning research into different approaches to communicating uncertainty to a variety of stakeholders.

MRS Advances ◽  
2016 ◽  
Vol 1 (63-64) ◽  
pp. 4239-4245
Author(s):  
T. Goto ◽  
S. Mitsui ◽  
H. Takase ◽  
S. Kurosawa ◽  
M. Inagaki ◽  
...  

ABSTRACTNUMO and JAEA have been conducting a joint research since FY2011, which is aimed to enhance the methodology of repository design and performance assessment in preliminary investigation stage for the deep geological disposal of high-level radioactive waste. As a part of this joint research, we have been developing glass dissolution models which include various processes derived from glass-overpack-bentonite buffer interaction, considering the precipitation of Fe-silicates associated with steel overpack corrosion, and Si transport through altered layer of glass. The objective of this modeling work is to show comprehensively the lifetime of the vitrified waste due to glass matrix dissolution timescales through sensitivity analysis, and to identify the feature/process that most strongly influences the lifetime, and to identify future R&D issues that would help to improve the nuclide transport analysis with confidential value and the safety case in future. The sensitivity analysis suggested that the duration of the glass dissolution might be predicted in the ranges from 3.8×103 to 1.9×105 years. Also, the results indicated that the precipitation of Fe–silicate has the strongest influence on the long-team behavior of vitrified waste.


Author(s):  
Ellie Scourse ◽  
Hideki Kawamura ◽  
Ian G. McKinley

The early ’80s UK programme for deep geological disposal of high-level radioactive waste was advanced and at the stage of characterising potential sites. When this project was put on hold in the mid ’80s, much expertise in this field was lost. In Japan R&D in the ’80s resulted in major generic safety assessments to demonstrate feasibility in the ’90s. This led to the establishment of NUMO (Nuclear Waste Management Organization of Japan) and the initiation of siting based on volunteerism. This novel approach required more flexible methodology and tools for site characterisation, repository design and safety assessment. NUMO and supporting R&D organisations in Japan have invested much time and effort preparing for volunteers but, unfortunately, no discussions with potential host communities have yet developed to the point where technical work is initiated. Presently, the UK is moving forward; with the NDA RWMD (Nuclear Decommissioning Agency Radioactive Waste Management Directorate) adopting a NUMO-style volunteering approach and a flexible design catalogue. Communities have already shown interest in volunteering. The situation is thus ideal for collaboration. The paper will expand on the opportunities for the UK and Japan to benefit from an active collaboration and discuss how this can be most efficiently implemented.


2012 ◽  
Vol 41 (3-4) ◽  
pp. 286-293 ◽  
Author(s):  
G. Ouzounian ◽  
S. Voinis ◽  
F. Boissier

The main challenge in development of the safety case for deep geological disposal is associated with the long periods of time over which high- and intermediate-level long-lived wastes remain hazardous. A wide range of events and processes may occur over hundreds of thousands of years. These events and processes are characterised by specific timescales. For example, the timescale for heat generation is much shorter than any geological timescale. Therefore, to reach a high level of reliability in the safety case, it is essential to have a thorough understanding of the sequence of events and processes likely to occur over the lifetime of the repository. It then becomes possible to assess the capability of the repository to fulfil its safety functions. However, due to the long periods of time and the complexity of the events and processes likely to occur, uncertainties related to all processes, data, and models need to be understood and addressed. Assessment is required over the lifetime of the radionuclides contained in the radioactive waste.


2021 ◽  
Vol 1 ◽  
pp. 129-130
Author(s):  
Axel Liebscher ◽  
Heini Reijonen ◽  
Ismo Aaltonen ◽  
Christina Lilja ◽  
Simon Norris ◽  
...  

Abstract. One of the key requirements for the deep geological disposal of high-level nuclear waste is the assessment of its long-term performance and safety (up to 1 Ma). Regarding engineered barrier system materials, such as copper, much of the data available comes from short-term investigations, such as laboratory experiments at different scales. Copper is an important part of many waste packaging and disposal concepts, e.g. KBS-3 developed in Sweden and Finland and Mark II developed in Canada. Natural analogues provide another important way of obtaining understanding on potential repository system behavior. Observations made from the geological systems can be utilized in the safety case, providing information on the assessment time scale. Copper analogue studies (both natural analogues and archaeological analogues) have been reported in the literature and they have been extensively reviewed by various authors (e.g. Miller et al., 2000) and by safety case projects (e.g. Reijonen et al., 2015) within waste management organizations. So far, only a few studies have focussed on the general stability of native copper within its natural media (e.g. Milodowski et al., 2000; Marcos, 2002). Keweenaw native copper occurrences (Lake Superior, USA) have been mentioned as a qualitative source of information (e.g. in Miller et al., 2000); however, data to be used in process-based safety assessments for geological disposal are lacking. These deposits have been mined for a long time and there is a great deal of knowledge related to them as well as samples collected, but no formal review has been made from the geological disposal point of view. The native copper at the Keweenaw area reflects various geological environments from bedrock to sediment and even anthropogenic mine site remnants and geochemical environments (e.g., anoxic vs. oxic, sulphur-free vs. sulphur-bearing). It thus provides a unique complementary data source that will be useful for estimating processes governing behavior of metallic copper. The MICA project phase I systematically collects and reviews the existing literature and data on the Michigan copper analogue sites and available sampling potential. Here, we present the current status of the project.


1988 ◽  
Vol 127 ◽  
Author(s):  
Jan L. Marivoet ◽  
Geert Volckaert ◽  
Arnold A. Bonne

ABSTRACTPerformance assessment studies have been undertaken on the geological disposal of high-level waste in a clay layer in the framework of the CEC project PAGIS. The methodology applied consists of two consecutive steps : a scenario and a consequence analysis. The scenario analysis has indicated that scenarios of normal evolution, of human intrusion, of climatic change, of secondary glaciation effects and of faulting should be evaluated. For the consequence analysis as well deterministic “best estimate” as stochastic calculations, including uncertainty, risk and sensitivity analyses, have been elaborated.The calculations performed show that most radionuclides decay to negligible levels within the first fewjneters of the clay barrier. Just a few radionuclides, 99Tc, 135Cs and 237Np with its daughter nuclides 233U and 229Th can eventually reach the biosphere. The maximum dose rates arising from the geological disposal of HLW, as evaluated by the “best-estimate” approach are about 10−11 Sv/y for river pathways. If the sinking of a water well into the 150 m deep aquifer layer in the vicinity of the repository is considered together with a climatic change, the maximum calculated dose rate rises to a value of 3×10−7 Sv/y. The maximum dose rates evaluated by stochastic calculations are about one order of magnitude higher due to the considerable uncertainties in the model parameters. In the case of the Boom clay the estimated consequences of a fault scenario are of the same order of magnitude as the results obtained for the normal evolution scenario. The maximum risk is estimated from the results obtained through stochastic calculations to be about 5×10−8 per year. The sensitivity analysis has shown that the effective thickness of the clay layer, the retention factors of Tc, Cs and Np, and the Darcy velocity in the aquifer are parameters which strongly influence the calculated dose rates.


2012 ◽  
Vol 76 (8) ◽  
pp. 2911-2918 ◽  
Author(s):  
G. Deissmann ◽  
S. Neumeier ◽  
G. Modolo ◽  
D. Bosbach

AbstractSeparated stocks of UK civil plutonium are currently held as a zero value asset in storage, as there is no final decision about whether they should be treated as a resource for future use as nuclear fuel or as waste. Irrespective of future UK government strategies regarding plutonium, at least a portion of the UK civil plutonium inventory will be designated for geological disposal. In this context, we performed a high-level review of the performance of potential wasteforms for the disposal of separated civil plutonium. The key issues considered were the durability and chemical reactivity of the wasteforms in aqueous environments and the long-term radionuclide release under conditions relevant to geological disposal. The major findings of the review, relevant not only to the situation in the UK but to plutonium disposal in general, are summarized in this paper. The review showed that, in the event of a decision being taken to declare plutonium as a waste for disposal, more systematic studies would be required to constrain the wasteform performance under repository conditions in order to derive realistic source terms for a safety case.


Sign in / Sign up

Export Citation Format

Share Document