Performance Assessment of a High-Level-Waste Repository in Clay

1988 ◽  
Vol 127 ◽  
Author(s):  
Jan L. Marivoet ◽  
Geert Volckaert ◽  
Arnold A. Bonne

ABSTRACTPerformance assessment studies have been undertaken on the geological disposal of high-level waste in a clay layer in the framework of the CEC project PAGIS. The methodology applied consists of two consecutive steps : a scenario and a consequence analysis. The scenario analysis has indicated that scenarios of normal evolution, of human intrusion, of climatic change, of secondary glaciation effects and of faulting should be evaluated. For the consequence analysis as well deterministic “best estimate” as stochastic calculations, including uncertainty, risk and sensitivity analyses, have been elaborated.The calculations performed show that most radionuclides decay to negligible levels within the first fewjneters of the clay barrier. Just a few radionuclides, 99Tc, 135Cs and 237Np with its daughter nuclides 233U and 229Th can eventually reach the biosphere. The maximum dose rates arising from the geological disposal of HLW, as evaluated by the “best-estimate” approach are about 10−11 Sv/y for river pathways. If the sinking of a water well into the 150 m deep aquifer layer in the vicinity of the repository is considered together with a climatic change, the maximum calculated dose rate rises to a value of 3×10−7 Sv/y. The maximum dose rates evaluated by stochastic calculations are about one order of magnitude higher due to the considerable uncertainties in the model parameters. In the case of the Boom clay the estimated consequences of a fault scenario are of the same order of magnitude as the results obtained for the normal evolution scenario. The maximum risk is estimated from the results obtained through stochastic calculations to be about 5×10−8 per year. The sensitivity analysis has shown that the effective thickness of the clay layer, the retention factors of Tc, Cs and Np, and the Darcy velocity in the aquifer are parameters which strongly influence the calculated dose rates.

2001 ◽  
Vol 298 (1-2) ◽  
pp. 125-135 ◽  
Author(s):  
Dirk Mallants ◽  
Jan Marivoet ◽  
Xavier Sillen

1994 ◽  
Vol 353 ◽  
Author(s):  
Neil A. Chapman ◽  
Johan Andersson ◽  
Peter Robinson ◽  
Kristina Skagius ◽  
Clas-Otto Wene ◽  
...  

AbstractThe Swedish Nuclear Power Inspectorate is developing a new methodology for the construction of scenarios for radiological consequence analysis as part of its SITE-94 performance assessment project. SITE-94 involves the incorporation of site specific data from the Äspö site into a performance assessment (PA) of a hypothetical high-level waste repository. This paper describes a systems analysis approach that has been developed based on the concept of organising all the events and processes which need to be taken account of in PA into a ‘process system’ and a much smaller residual group which are used to generate scenarios. The methodology used for developing scenarios, producing calculation cases and addressing the various types of uncertainty involved in PA consequence analysis is described.


1986 ◽  
Vol 84 ◽  
Author(s):  
V. M. Oversby

AbstractPerformance assessment calculations are required for high level waste repositories for a period of 10,000 years under NRC and EPA regulations. In addition, the Siting Guidelines (IOCFR960) require a comparison of sites following site characterization and prior to final site selection to be made over a 100,000 year period. In order to perform the required calculations, a detailed knowledge of the physical and chemical processes that affect waste form performance will be needed for each site. While bounding calculations might be sufficient to show compliance with the requirements of IOCFR60 and 40CFRI91, the site comparison for 100,000 years will need to be based on expected performance under site specific conditions. The only case where detailed knowledge of waste form characteristics in the repository would not be needed would be where radionuclide travel times to the accessible environment can be shown to exceed 100,000 years. This paper will review the factors that affect the release of radionuclides from spemt fuel under repository conditions, summarize our present state of knowledge, and suggest areas where more work is needed in order to support the performance assessment calculations.


2015 ◽  
Vol 79 (6) ◽  
pp. 1665-1673 ◽  
Author(s):  
Magnus Kronberg ◽  
Jan Gugala ◽  
Keijo Haapala

AbstractOver the last five decades private and national energy programmes worldwide have been producing a variety of radioactive wastes. One of the safest ways of disposing of this waste is to bury it deep underground in purpose-built geological disposal facilities. Currently, there is no operating geological repository in Europe for high-level waste but the goal of the IGD-TP is that the first repository shall be fully operational before the year 2025. Several studies and experiments are ongoing at various potential repository sites in Europe with the goal to establish general approaches that can be adapted for any country in need of a geological repository.The Swedish Nuclear Fuel and Waste Management Co (SKB) in Sweden and Posiva Oy in Finland are developing a method for geological disposal of high-level long-lived nuclear waste in crystalline rock, the KBS-3 method. KBS-3V (vertical) is both organizations reference design, but KBS-3H (horizontal) emplacement is also being researched as a potential alternative. Of high importance in the development is demonstrating the technical feasibilityin situof safe and reliable construction, manufacturing, disposal and sealing of such geological disposal facilities. Parts of these demonstrations are carried out under the framework of EurAtom/FP7 and one of these projects is the LUCOEX project where SKB is demonstrating horizontal emplacement, the Multi Purpose Test (MPT), and Posiva is demonstrating vertical buffer installation processes.The MPT includes the key components of the horizontal design and comprises all essential steps; manufacturing of the full-scale components, their assembly, installation in the drift and monitoring of the early buffer evolution. The MPT installation was successfully performed in late 2013. By combining the components, an initial verification of the design implementation has been achieved. At the same time, integrating the components has meant the recognition of some design weaknesses and the design will be updated accordingly.Posiva's KBS-3V buffer installation equipment that places buffer blocks with high precision in vertical deposition holes is currently being developed and will be tested during 2014 and 2015 in real underground conditions. The machine uses vacuum lifting tools for moving the buffer blocks and laser scanning technology to position both the machine and blocks. Functionality of the concept and equipment selected will be confirmed by the tests and the installation tests will provide important information about the suitability of the selected buffer dimensions and tolerances.


Author(s):  
Gustaaf C. Cornelis

Abstract This paper describes the activities launched at SCK•CEN, intended to explore ethical and other non-technical aspects when dealing with the time scales considered in the high-level waste disposal program. (1) Especially the issues of retrievability and precaution will be focused on philosophically. Many questions will be raised in order to sensitize all stakeholders for the transdisciplinary character of the transgenerational problem at hand.


Author(s):  
Bernhard Kienzler ◽  
Peter Vejmelka ◽  
Volker Metz

Abstract The amount of mobile radionuclides is controlled by the geochemical isolation potential of the repository. Many investigations are available in order to determine the maximal radionuclide concentrations released from different waste forms of specific disposal strategies for disposal in rock salt formations. These investigations result in reaction (dissolution) rates, maximum concentrations, and sorption coefficients. The experimental data have to be applied to various disposal strategies. The case studies presented in this communication cover the selection, the volumes, and the composition of backfill materials used as sorbents for radionuclides. As an example, for brown coal fly ash (BFA) - Q-brine systems, sorption coefficients were measured as well as solublilities of several actinides and other long-lived radionuclides. Dissolved CO32− was buffered to negligible concentration by the presence of high amount of Mg in solution. In the sorption experiments Pu, Th, Np, and U concentrations close or below detection limit were obtained. Concentrations in the same ranges are computed by means of geochemical modeling, if precipitation of “simple” tetravalent hydroxides (An(OH)4(am) phases) is assumed. In the case of U in a Portland cement dominated geochemical environment, measured U(VI) concentration corresponds to the solubility of hexavalent solids, such as Na2U2O7. A similar behavior of U was observed in high-level waste glass experiments. Experiments investigating sorption behavior of corroded cement showed that in the case of application of a sufficient large inventory of actinides, measured concentrations were found to be independent of the inventory. In this case, measured concentrations were controlled by solid phases. If smaller actinide inventories were applied, resulting concentrations were found to be below concentrations constrained by well-known solids. Here, a more or less pronounced sorption of the radioactive elements was observed. The radionuclide concentrations determined in the BFA “sorption” experiments are found to be close to the detection limits. For this reason, it is not possible to extrapolate the radionuclide behavior to lower concentrations. We cannot distinguish, if sorption or precipitation controls measured radionuclide concentrations. However, in the presence of reducing materials such as BFA, solubilities of tetravalent actinides and of Tc(IV) represent a realistic estimation of the maximal element concentrations needed in performance assessment studies. The concentrations of these redox sensitive elements are controlled by precipitation of An(OH)4(am) phases for disposal concepts considered in German salt formations. Under this assumption, quantities such as solid-solution ratios used in (sorption) experiments do not affect the mobilization of the radionuclides. Additional conclusions can be drawn from comparison of the findings for the redox sensitive elements in the BFA / portland cement brine systems: We can assume that expected actinide and technetium concentrations in the near-field of radioactive wastes are affected by the total inventory of radionuclides in the disposal room. Sorption will be relevant, if the total dissolved radionuclide concentration remains below the maximal solubility defined by the solid radionuclide phase which is stable in the geochemical environment. In contrast to the portland cement system, the relevant radionuclide phase are most probably tetravalent hydroxides in the BFA systems. These conclusions are of high importance to performance assessment for the radioactive waste repository systems, because they restrict the applicability of sorption models in the near field of the waste.


Sign in / Sign up

Export Citation Format

Share Document