An Overview of US EPA’s Current Radioactive Waste Management and General Radiation Protection Efforts

Author(s):  
R. Thomas Peake ◽  
Daniel Schultheisz ◽  
Loren W. Setlow ◽  
Brian Littleton ◽  
Reid Rosnick ◽  
...  

The United States Environmental Protection Agency’s (EPA) Radiation Protection Division is the portion of EPA (or the Agency) that develops environmental standards for radioactive waste disposal in the United States. One current issue of concern is the disposal of low activity radioactive waste (LAW), including wastes that would be produced by a radiological dispersal device (RDD), for which current disposal options may be either inconsistent with the hazard presented by the material or logistically problematic. Another major issue is related to the resurgence in uranium mining. Over the past several years, demand for uranium for nuclear power plant fuel has increased as has the price. The increase in price has made uranium mining potentially profitable in the US. EPA is reviewing its relevant regulations, developed primarily in the 1980s, for potential revisions. For example, in-situ leaching (also known as in-situ recovery) is now the technology of choice where applicable, yet our current environmental standards are focused on conventional uranium milling. EPA has two actions in process, one related to the Clean Air Act, the other related to revising the environmental standards that implement the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Separately, but related, EPA has developed over the last several years uranium mining documents that address technologically enhanced natural occurring radioactive materials (TENORM) from abandoned uranium mines, and wastes generated by active uranium extraction facilities. Lastly, in 1977 EPA developed environmental standards that address nuclear energy, fuel fabrication, reprocessing, and other aspects of the uranium fuel cycle. In light of the increased interest in nuclear power and the potential implementation of advanced fuel cycle technologies, the Agency is now reviewing the standards to determine their continued applicability for the twenty-first century.

1981 ◽  
Vol 11 ◽  
Author(s):  
H. C. Burkholder

In response to draft radioactive waste disposal standards, R&D programs have been initiated in the United States which are aimed at developing and ultimately using radionuclide transport-delaying (e.g., long-lived waste containers) and radionuclide transport-controlling (e.g., very low release rate waste forms) engineered components as part of the isolation system. Before these programs proceed significantly, it seems prudent to evaluate the technical justification for development and use of sophisticated engineered components in radioactive waste isolation.


Author(s):  
Juyoul Kim ◽  
Sukhoon Kim ◽  
Jin Beak Park ◽  
Sunjoung Lee

In the Korean LILW (Low- and Intermediate-Level radioactive Waste) repository at Gyeongju city, the degradation of organic wastes and the corrosion of metallic wastes and steel containers would be important processes that affect repository geochemistry, speciation and transport of radionuclides during the lifetime of a radioactive waste disposal facility. Gas is generated in association with these processes and has the potential threat to pressurize the repository, which can promote the transport of groundwater and gas, and consequently radionuclide transport. Microbial activity plays an important role in organic degradation, corrosion and gas generation through the mediation of reduction-oxidation reactions. The Korean research project on gas generation is being performed by Korea Radioactive Waste Management Corporation (hereafter referred to as “KRMC”). A full-scale in-situ experiment will form a central part of the project, where gas generation in real radioactive low-level maintenance waste from nuclear power plants will be done as an in-depth study during ten years at least. In order to examine gas generation issues from an LILW repository which is being constructed and will be completed by the end of December, 2012, two large-scale facilities for the gas generation experiment will be established, each equipped with a concrete container carrying on 16 drums of 200 L and 9 drums of 320 L of LILW from Korean nuclear power plants. Each container will be enclosed within a gas-tight and acid-proof steel tank. The experiment facility will be fully filled with ground water that provides representative geochemical conditions and microbial inoculation in the near field of repository. In the experiment, the design includes long-term monitoring and analyses for the rate and composition of gas generated, and aqueous geochemistry and microbe populations present at various locations through on-line analyzers and manual periodical sampling. A main schedule for establishing the experiment facility is as follows: Completion of the detailed design until the second quarter of the year 2010; Completion of the manufacture and on-site installation until the second quarter of the year 2011; Start of the operation and monitoring from the third quarter of the year 2011.


Author(s):  
Michael Needham

Why is the detection of radioactive sources important to the solid waste industry?: Radioactive material is used extensively in the United States in research, medicine, education, and industry for the benefit of society (e.g. smoke detectors, industrial process gauges, medical diagnosis/treatment). Generally speaking, the Nuclear Regulatory Commission and state governments regulate the use and disposal of radioactive materials. Licensed radioactive waste disposal facilities receive the bulk of the waste generated in the United States with exceptions for low-level waste (e.g. medical patient waste) that may be disposed of as municipal waste. According to the Conference of Radiation Control Program Directors, Inc (CRCPD)., there has been an increasing number of incidence involving the detection of prohibited radioactive wastes at solid waste management facilities. While the CRCPD acknowledges that the increased incidence may be partially attributed to the growing number of solid waste facilities that have detection systems, undetected sources of ionizing radiation can harm the environment, have a negative impact on employee health and safety, and result in significant remedial actions. Implementing an effective detection/response plan can aid in the proper management of radioactive waste and serve to minimize the potential for negative outcomes.


2020 ◽  
pp. 150-173
Author(s):  
Wallace J. Thies

This chapter details how, like Colonel Qaddafi's Libya and Saddam Hussein's Iraq, Iran under clerical rule was widely thought to be a difficult target for a strategy based on containment. With every year that passed, Iran seemed to draw closer to becoming a nuclear power and therefore harder to deter and to contain, or so the conventional wisdom proclaimed. The chapter considers the political–military rivalry between the United States and Iran between 1991 (the first Persian Gulf War) and 2016 (when Iran accepted strict limits on its use of the nuclear fuel cycle to produce fissionable materials). If containment pessimists are correct about Iran being undeterrable and uncontainable, then many of the events recounted in the chapter probably should not have occurred. But they did occur, which suggests that a closer look at the historical record will likely reveal some additional interesting twists and turns.


Sign in / Sign up

Export Citation Format

Share Document