Validation of Multi-Zone Combustion Model Ability to Predict Two Stroke Diesel Engine Performance and NOx Emissions Using on Board Measurements

Author(s):  
Dimitrios T. Hountalas ◽  
Georgios N. Zovanos ◽  
David Sakellarakis ◽  
Antonios K. Antonopoulos

Diesel engines are almost exclusively used for propulsion of marine vessels. They are also used for power generation either on vessels or power stations because of their superior efficiency, high power concentration, stability and reliability compared to other alternative power systems. However, a significant drawback of these engines is the production of exhaust gases some of which are toxic and thus can be a threat to the environment. The most important toxic gaseous pollutants found in the exhaust gas of a marine diesel engine are NOx (NO, NO2 etc), CO and SOx. Particulate matter is also a major pollutant of diesel. Currently CO2 is considered to be also a “pollutant”, even though not being directly toxic, due to its impact on global warming. In the Marine sector there exists legislation for marine diesel engine NOx emissions which is getting stricter as we move on towards Tier III. This brings new challenges for the engine makers as far as NOx control and its reduction is concerned. Towards this effort of NOx reduction, modelling has an important role which will become even more important in the future. This is mainly attributed to the large size of marine engines which makes the use of experimental techniques extremely expensive and time consuming. Modelling can greatly assist NOx reduction efforts at least at the early stages of development leading to cost reduction. As known NOx emissions are strongly related to engine performance and thus efforts for their reduction usually have a negative impact on efficiency and particulate matter. Modelling can play an important role towards this direction because optimization techniques can be applied to determine the optimum design for NOx reduction with the lowest impact on efficiency. At present an effort is made to apply an existing well validated multi-zone combustion model for DI diesel engines on a 2-stroke marine diesel engine used to power a tanker vessel. The model is used to determine both engine performance and NOx emissions at various operating conditions. To validate model’s ability to predict performance and NOx emissions, a comparison is given against data obtained from the vessel official NOx file and from on board measurements conducted by the present research group. On board performance measurements were conducted using an in-house engine diagnostic system while emissions were recorded using a portable exhaust gas analyzer. From the comparison of measured against predicted data, the ability of the model to adequately predict performance and NOx emissions of the slow speed 2-stroke marine diesel engine examined is demonstrated. Furthermore, from the application are revealed specific problems related to the application of such models on large slow speed two-stroke engines which is significantly important for their further development.

2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Lijiang Wei ◽  
Anmin Wu ◽  
Jie Liu ◽  
Mingliang Zhong ◽  
Xuebai Wang

For the two-stroke marine diesel engine, the action of exhaust valve has a significant impact on scavenging and combustion processes and ultimately affects the engine performances and emissions. In order to reduce nitrogen oxides (NOx) emissions of a two-stroke marine diesel engine, different exhaust valve lifts (EVLs) were achieved by computational fluid dynamics simulation method in this study. The NOx reduction effect and influence mechanism of EVL on a two-stroke marine diesel engine were investigated in detail. The results showed that the in-cylinder residual exhaust gas and the internal exhaust gas recirculation (EGR) rate gradually increased with the decreasing EVL. Although the total mass of charge enclosed in the cylinder did not change much, the composition changed gradually and the maximum internal EGR rate reached 13.17% in this study. The maximum compression pressure and combustion pressure both rose first and then decreased with the decreasing EVL. While the start of combustion and the maximum combustion temperature were basically unaffected by EVL, the indicated power of the engine was also not much impacted when the EVL was changed from increasing 10 mm to decreasing 20 mm. The indicated specific fuel consumption first declined slowly and then rose rapidly as the EVL reduction exceeded 20 mm. NOx emissions decreased monotonously with the decreasing EVL. The reduction of NOx formation rate and the amount of NOx formation mass mainly occurred at the middle and late stages of combustion for the downward moving of residual exhaust gas. NOx emissions were reduced by 12.57% without compromising other engine performances at medium-reduced EVL in this study. However, in order to further reduce NOx emissions at low EVLs, other measures may be needed to make the residual exhaust gas more evenly distributed during the initial stage of combustion.


Author(s):  
Zhanguang Wang ◽  
Song Zhou ◽  
Yongming Feng ◽  
Yuanqing Zhu

In 2016, the International Maritime Organization (IMO) has enforced stricter nitrogen oxide (NOx) emission standards. Exhaust gas recirculation (EGR) technology is an effective way to achieve IMO Tier III standards for two-stroke marine diesel engines. This paper selected the 6S50ME-C8.2 diesel engine for the study, by making use of GT-POWER simulation software. In this paper, three different types of EGR were built to investigate the effects of EGR on engine performance and NOx emissions. The results show that both the high pressure EGR system and the low pressure EGR system can reduce NOx emissions with the power drop and BSFC risen. While in the high pressure EGR system combined with EGB, more NOx can be reduced with less power drop and BSFC risen. What is more, the running points of the compressor are still in the high efficient area and away the surge margin. Based on the conclusions, the results obtained in this paper can offer reference for the turbocharged diesel engines with EGR system to reduce NOx emissions and improve engine performance.


Author(s):  
Zhanguang Wang ◽  
Song Zhou ◽  
Yongming Feng ◽  
Yuanqing Zhu

In 2016, the International Maritime Organization (IMO) has enforced stricter nitrogen oxide (NOx) emission standards. Exhaust gas recirculation (EGR) technology is an effective way to achieve IMO Tier III standards for two-stroke marine diesel engines. This paper selected the 6S50ME-C8.2 diesel engine for research, by making use of GT-POWER simulation software. In this paper, three different types of EGR systems were built to investigate the effects of EGR on engine performance and NOx emissions. The results show that both the high pressure EGR system and the low pressure EGR system can reduce NOx emissions with the power drop and BSFC risen. While in the high pressure EGR system combined with CB (cylinder bypass) and EGB (exhaust gas bypass), more NOx emissions can be reduced with less power drop and BSFC risen. What is more, the running points of the compressor are still in the efficient areas and away the surge margin. Based on the conclusions, the results obtained in this paper can provide reference for turbocharged diesel engines with EGR systems to reduce NOx emissions and improve engine performance.


2021 ◽  
pp. 146808742110692
Author(s):  
Zhenyu Shen ◽  
Yanjun Li ◽  
Nan Xu ◽  
Baozhi Sun ◽  
Yunpeng Fu ◽  
...  

Recently, the stringent international regulations on ship energy efficiency and NOx emissions from ocean-going ships make energy conservation and emission reduction be the theme of the shipping industry. Due to its fuel economy and reliability, most large commercial vessels are propelled by a low-speed two-stroke marine diesel engine, which consumes most of the fuel in the ship. In the present work, a zero-dimensional model is developed, which considers the blow-by, exhaust gas bypass, gas exchange, turbocharger, and heat transfer. Meanwhile, the model is improved by considering the heating effect of the blow-by gas on the intake gas. The proposed model is applied to a MAN B&W low-speed two-stroke marine diesel engine and validated with the engine shop test data. The simulation results are in good agreement with the experimental results. The accuracy of the model is greatly improved after considering the heating effect of blow-by gas. The model accuracy of most parameters has been improved from within 5% to within 2%, by considering the heating effect of blow-by gas. Finally, the influence of blow-by area change on engine performance is analyzed with considering and without considering the heating effect of blow-by.


Sign in / Sign up

Export Citation Format

Share Document