Enhanced Liquid Water Removal From PEM Fuel Cell Flow Channels by Superimposing Acoustic Pressure Wave on Air Flow

Author(s):  
Mehdi Mortazavi ◽  
Anthony D. Santamaria ◽  
Jingru Benner ◽  
Vedang Chauhan

Abstract Enhanced water removal from the flow channel of an ex-situ PEM fuel cell test section is obtained by superimposing acoustic pressure wave on air flow prior to entering into the flow channel. Water accumulation within the flow channel was visualized with a CCD camera and liquid-gas two-phase flow pressure drop was measured along the flow channel. Acoustic pressure waves were superimposed in sine waves at different frequencies between 20 and 120 Hz with a 20-Hz interval. Results indicated that water accumulation in the flow channel was lowest when acoustic pressure waves were superimposed at 80 Hz on air flow. For experiments with no acoustic vibration, the average water slug cumulative area for three runs was obtained at 288.6 mm2 while this average was as low as 43.9 mm2 for experiments conducted at 80 Hz. For other frequencies tested (20, 40, 60, 100, and 120 Hz), water accumulation within the flow channel was less than that for experiments with no vibration but the accumulation of water was still greater than experiments conducted at 80 Hz. The two-phase flow pressure drops were also lowest for experiments conducted at 80 Hz while the highest pressure drops were obtained in experiments with no acoustic vibration. Droplets were also visualized from a side-view angle in a goniometer in order to obtain contact angles. Images showed droplet oscillation under the influence of acoustic vibration. For the three superficial air velocities tested in this study (1.30, 1.82, and 2.30 m/s) the contact angle hysteresis were almost identical with an average value around 40°.

1993 ◽  
Author(s):  
Montgomery W. Wheeler ◽  
Frederick R. Best ◽  
Thomas R. Reinarts

Author(s):  
Mehdi Mortazavi ◽  
Kazuya Tajiri

Proton exchange membrane (PEM) fuel cells produce power with water and heat as inevitable byproducts. Accumulated liquid water within gas channel blocks the reactant flow and cause pressure drop along the gas channel. It is of extreme importance to accurately predict the liquid and gas two-phase flow pressure drop in PEM fuel cell flow channels. This pressure drop can be considered as an in-situ diagnostic tool that reveals information about the amount of liquid water accumulated within the flow channels. In this paper, the two-phase flow pressure drops are measured in ex-situ PEM fuel cell parallel flow channels. The pressure drops were measured for air mass fluxes of 2.4–6.3kg/m2s and water mass fluxes of 0.0071–1.28kg/m2s. These mass fluxes correspond to 2–5.33m/s and 7.14 × 10−6 – 0.0012m/s air and water superficial velocities, respectively. The measured two-phase flow pressure drops are then compared with different two-phase flow pressure drop models. Qualitative and quantitative comparison between the experimental results and existing models is provided in this work.


2019 ◽  
Vol 17 (72) ◽  
pp. 101-109
Author(s):  
Muhsen Koli Nahi

The aim of this study is to discover the deviation of two phase flow correlations. A comparsion was made between the expermital values of two-phase flow pressure drops data were obtained experimentally by Al-Jumaily (1999) by using air-water mixture in a horizontal tube of (132 mm) nominal diameter and a test section of (32 m) long at pressure and temperature close to atmospheric and those predicted by three correlations well-used in the literature, which show that the homogeneous model was the best


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Ammar Zeghloul ◽  
Hiba Bouyahiaoui ◽  
Abdelwahid Azzi ◽  
Abbas H. Hasan ◽  
Abdelsalam Al-sarkhi

Abstract This paper presents an experimental investigation of the pressure drop (DP) through valves in vertical upward flows. Experiments were carried out using a 1¼″ (DN 32) ball and gate valve. Five opening areas have been investigated from fully open to the nearly fully closed valve, using air with a superficial velocity of 0–3.5 m/s and water 0.05–0.91 m/s. These ranges cover single-phase and the bubbly, slug and churn two-phase flow regimes. It was found that for the single-phase flow experiments, the valve coefficient increases with the valve opening and is the same, in both valves, for the openings smaller than 40%. The single-phase pressure drop increases with the liquid flowrate and decreases with the opening area. The two-phase flow pressure drop was found considerably increased by reducing the opening area for both valves. It reaches its maximum values at 20% opening for the ball valve and 19% opening for the gate valve. It was also inferred that at fully opening condition, the two-phase flow multiplier, for both valves, has been found close to unity for most of the tested flow conditions. For 40 and 20% valve openings the two-phase multiplier decreases in the power-law with liquid holdup for the studied flow conditions. Models proposed originally for evaluating the pressure drop through an orifice in single-phase and two-phase flows were also applied and assessed in the present experimental data.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Ana Luiza B. Santana ◽  
Moisés A. Marcelino Neto ◽  
Rigoberto E. M. Morales

Abstract Corrugated pipes (CP) have regularly shaped and spaced cavities on their internal walls that can induce dynamic changes in the flow, such as increased pressure drops. Offshore petroleum production pipelines are an example of an industrial application of CPs, known as flexible lines. Slug flow is the most challenging flow pattern in those lines due to its complex hydrodynamics. A number of previous studies proposed correlations to predict the two-phase flow pressure drops in smooth pipes (SPs). However, limited researches have evaluated the pressure drops associated with liquid–gas slug flow in CPs. In this work, experiments to analyze the pressure drops in horizontal air–water slug flow under different configurations of CPs were carried out. The tests were performed in three different CP internal diameters (IDs) (26, 40, and 50 mm) with different cavity widths (1.2, 1.6, and 2.0 mm). The effects of the internal diameters and the cavity widths on the pressure drops associated with slug flow were analyzed. Results demonstrated that the pressure drops increase with increasing cavity widths. The experimental data were fitted and a pressure drop correlation using the concept of multiplier factor was proposed. Comparisons between predictions and the experimental data proved to be within ±10% accuracy.


Sign in / Sign up

Export Citation Format

Share Document