acoustic pressure wave
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 2)

2021 ◽  
Vol 2 (11(75)) ◽  
pp. 34-42
Author(s):  
V. Mel’nick ◽  
N. Gnateiko

The forced movement of the submarine under the action of an acoustic pressure wave at rectilinear and uniform movement of the device is analyzed. The analysis of the dynamics of translational movement of the hull under the action of an acoustic pressure wave in an ideal environment, which makes it possible to assess the physical properties of the environment and the elastic properties of the outer hull on the value of the maximum movement of the submarine. It is proved that if the total pressure pulse is limited, then the water particles will receive certain displacements and it can be expected that under these conditions the displacement of the submarine will be determined. The results of the analysis make it possible to conduct a comparative analysis of the translational movement of the submarine under the action of an acoustic pressure wave, taking into account the characteristics of the moving medium, more precisely, taking into account the viscosity of the real medium


2021 ◽  
Author(s):  
David Villero

A combined finite element-Ritz method is developed to effectively model the 3D lowfrequency acoustics in CANDU fuel sub-channels. The complex acoustic behavior of CANDU fuel sub-channels in the cross section is captured using the six-node isoparametric triangular elements; and the acoustic wave propagation in the axial direction is modeled using the polynomials of order n. The Lagrange equations are utilized to formulate the system equations of motion. The acoustic system considered in this study consists of pipe-like medium (water) with rigid and smooth walls. At the inlet of the fuel channel acoustic system, an acoustic pressure wave is prescribed to simulate the pulsation induced by the main feeder pumps. At the outlet, the acoustic system is assumed to interact with a reacting and absorbing material with prescribed acoustic impedance. The method was tested for several scenarios of interest. Numerical results obtained are in excellent agreement with the analytical and ANSYS solutions.


2021 ◽  
Author(s):  
David Villero

A combined finite element-Ritz method is developed to effectively model the 3D lowfrequency acoustics in CANDU fuel sub-channels. The complex acoustic behavior of CANDU fuel sub-channels in the cross section is captured using the six-node isoparametric triangular elements; and the acoustic wave propagation in the axial direction is modeled using the polynomials of order n. The Lagrange equations are utilized to formulate the system equations of motion. The acoustic system considered in this study consists of pipe-like medium (water) with rigid and smooth walls. At the inlet of the fuel channel acoustic system, an acoustic pressure wave is prescribed to simulate the pulsation induced by the main feeder pumps. At the outlet, the acoustic system is assumed to interact with a reacting and absorbing material with prescribed acoustic impedance. The method was tested for several scenarios of interest. Numerical results obtained are in excellent agreement with the analytical and ANSYS solutions.


2020 ◽  
Vol 87 (9) ◽  
pp. 586-596
Author(s):  
Sorokhaibam Nilakanta Meitei ◽  
Kunal Borah ◽  
Saibal Chatterjee

AbstractThe main cause of insulation degradation is due to partial discharges (PDs) occurring inside the transformer, and its detection and localization are the most effective, non-destructive methods to assess the insulation condition of the transformer. Among the PD detection methods, the acoustic PD detection technique is popular because of its various advantages. The acoustic PD detection method for accurate PD source localization becomes quite challenging when PD occurs inside the transformer core and windings. As the acoustic sound wave can be distorted and vibration with its distribution, so the type of PD sensors with their setting in the transformer should be thoroughly investigated and chosen. In this work, via simulation, the acoustic sound distribution inside the power transformer due to PD occurs is studied. Based on the knowledge of acoustic pressure wave distribution, a Lead Zirconate Titanate (PZT-5H) sensor is designed using Finite element method based COMSOL Multiphysics software and placed it on the outer walls of the transformer for PD detection and localization. The PD induction position has been recognized from the sensor signal using an artificial neural network. The results of PD detection and localization by the proposed piezoelectric sensor and COMSOL probe point are in good agreement.


2020 ◽  
Vol 21 (9) ◽  
pp. 3082 ◽  
Author(s):  
Jean Michel Merkes ◽  
Leiming Zhu ◽  
Srishti Ballabh Bahukhandi ◽  
Magnus Rueping ◽  
Fabian Kiessling ◽  
...  

Photoacoustic imaging (PAI) is a rapidly evolving field in molecular imaging that enables imaging in the depths of ultrasound and with the sensitivity of optical modalities. PAI bases on the photoexcitation of a chromophore, which converts the absorbed light into thermal energy, causing an acoustic pressure wave that can be captured with ultrasound transducers, in generating an image. For in vivo imaging, chromophores strongly absorbing in the near-infrared range (NIR; > 680 nm) are required. As tetrapyrroles have a long history in biomedical applications, novel tetrapyrroles and inspired mimics have been pursued as potentially suitable contrast agents for PAI. The goal of this review is to summarize the current state of the art in PAI applications using tetrapyrroles and related macrocycles inspired by it, highlighting those compounds exhibiting strong NIR-absorption. Furthermore, we discuss the current developments of other absorbers for in vivo photoacoustic (PA) applications.


Author(s):  
Habib Ammari ◽  
Bryn Davies

The aim of this paper is to understand the behaviour of a large number of coupled subwavelength resonators. We use layer potential techniques in combination with numerical computations to study an acoustic pressure wave scattered by a graded array of subwavelength resonators. Using this approach, the spatial frequency separation properties of such an array can be understood. Our set-up is inspired by the graded structure of cochlear hair cells on the surface of the basilar membrane. We compute the resonant modes of the system and explore the model's ability to decompose incoming signals. We propose a mathematical explanation for phenomena identified with the cochlea's ‘travelling wave’ behaviour and tonotopic frequency map.


Author(s):  
Mehdi Mortazavi ◽  
Anthony D. Santamaria ◽  
Jingru Benner ◽  
Vedang Chauhan

Abstract Enhanced water removal from the flow channel of an ex-situ PEM fuel cell test section is obtained by superimposing acoustic pressure wave on air flow prior to entering into the flow channel. Water accumulation within the flow channel was visualized with a CCD camera and liquid-gas two-phase flow pressure drop was measured along the flow channel. Acoustic pressure waves were superimposed in sine waves at different frequencies between 20 and 120 Hz with a 20-Hz interval. Results indicated that water accumulation in the flow channel was lowest when acoustic pressure waves were superimposed at 80 Hz on air flow. For experiments with no acoustic vibration, the average water slug cumulative area for three runs was obtained at 288.6 mm2 while this average was as low as 43.9 mm2 for experiments conducted at 80 Hz. For other frequencies tested (20, 40, 60, 100, and 120 Hz), water accumulation within the flow channel was less than that for experiments with no vibration but the accumulation of water was still greater than experiments conducted at 80 Hz. The two-phase flow pressure drops were also lowest for experiments conducted at 80 Hz while the highest pressure drops were obtained in experiments with no acoustic vibration. Droplets were also visualized from a side-view angle in a goniometer in order to obtain contact angles. Images showed droplet oscillation under the influence of acoustic vibration. For the three superficial air velocities tested in this study (1.30, 1.82, and 2.30 m/s) the contact angle hysteresis were almost identical with an average value around 40°.


Sign in / Sign up

Export Citation Format

Share Document