Visualization System of Swirl Motion

Author(s):  
Katsuyuki Nakayama ◽  
Kenji Umeda ◽  
Toshio Ichikawa ◽  
Teruyuki Nagano ◽  
Hideyuki Sakata

An instrumentation of system composed of experimental device and numerical analysis is presented to visualize flow and identify swirling motion. Experiment is performed with transparent material and PIV (Particle Image Velocimetry) instrumentation, by which velocity vector field is obtained. This vector field is then analyzed numerically by “swirling flow analysis”, which estimate its velocity gradient tensor and the corresponding eigenvalue (swirling function). As an instantaneous flow field in steady/unsteady states is captured by PIV, the flow field is analyzed, and existence of vortices or swirling motions and their locations are identified in spite of their size. In addition, intensity of swirling is evaluated. The analysis enables swirling motion to emerge, even though it is hidden in uniform flow and velocity filed does not indicate any swirling. This visualization system can be applied to investigate condition to control flow or design flow.

2002 ◽  
Vol 33 (6) ◽  
pp. 794-800 ◽  
Author(s):  
U. Dierksheide ◽  
P. Meyer ◽  
T. Hovestadt ◽  
W. Hentschel

2021 ◽  
pp. 146808742110131
Author(s):  
Xiaohang Fang ◽  
Li Shen ◽  
Christopher Willman ◽  
Rachel Magnanon ◽  
Giuseppe Virelli ◽  
...  

In this article, different manifold reduction techniques are implemented for the post-processing of Particle Image Velocimetry (PIV) images from a Spark Ignition Direct Injection (SIDI) engine. The methods are proposed to help make a more objective comparison between Reynolds-averaged Navier-Stokes (RANS) simulations and PIV experiments when Cycle-to-Cycle Variations (CCV) are present in the flow field. The two different methods used here are based on Singular Value Decomposition (SVD) principles where Proper Orthogonal Decomposition (POD) and Kernel Principal Component Analysis (KPCA) are used for representing linear and non-linear manifold reduction techniques. To the authors’ best knowledge, this is the first time a non-linear manifold reduction technique, such as KPCA, has ever been used in the study of in-cylinder flow fields. Both qualitative and quantitative studies are given to show the capability of each method in validating the simulation and incorporating CCV for each engine cycle. Traditional Relevance Index (RI) and two other previously developed novel indexes: the Weighted Relevance Index (WRI) and the Weighted Magnitude Index (WMI), are used for the quantitative study. The results indicate that both POD and KPCA show improvements in capturing the main flow field features compared to ensemble-averaged PIV experimental data and single cycle experimental flow fields while capturing CCV. Both methods present similar quantitative accuracy when using the three indexes. However, challenges were highlighted in the POD method for the selection of the number of POD modes needed for a representative reconstruction. When the flow field region presents a Gaussian distribution, the KPCA method is seen to provide a more objective numerical process as the reconstructed flow field will see convergence with an increasing number of modes due to its usage of Gaussian properties. No additional criterion is needed to determine how to reconstruct the main flow field feature. Using KPCA can, therefore, reduce the amount of analysis needed in the process of extracting the main flow field while incorporating CCV.


2021 ◽  
pp. 039139882110130
Author(s):  
Guang-Mao Liu ◽  
Fu-Qing Jiang ◽  
Xiao-Han Yang ◽  
Run-Jie Wei ◽  
Sheng-Shou Hu

Blood flow inside the left ventricle (LV) is a concern for blood pump use and contributes to ventricle suction and thromboembolic events. However, few studies have examined blood flow inside the LV after a blood pump was implanted. In this study, in vitro experiments were conducted to emulate the intraventricular blood flow, such as blood flow velocity, the distribution of streamlines, vorticity and the standard deviation of velocity inside the LV during axial blood pump support. A silicone LV reconstructed from computerized tomography (CT) data of a heart failure patient was incorporated into a mock circulatory loop (MCL) to simulate human systemic circulation. Then, the blood flow inside the ventricle was examined by particle image velocimetry (PIV) equipment. The results showed that the operating conditions of the axial blood pump influenced flow patterns within the LV and areas of potential blood stasis, and the intraventricular swirling flow was altered with blood pump support. The presence of vorticity in the LV from the thoracic aorta to the heart apex can provide thorough washing of the LV cavity. The gradually extending stasis region in the central LV with increasing blood pump support is necessary to reduce the thrombosis potential in the LV.


2010 ◽  
Vol 43 (6) ◽  
pp. 1039-1047 ◽  
Author(s):  
Emily J. Berg ◽  
Jessica L. Weisman ◽  
Michael J. Oldham ◽  
Risa J. Robinson

Author(s):  
Jean Brunette ◽  
Rosaire Mongrain ◽  
Rosaire Mongrain ◽  
Adrian Ranga ◽  
Adrian Ranga ◽  
...  

Myocardial infarction, also known as a heart attack, is the single leading cause of death in North America. It results from the rupture of an atherosclerotic plaque, which occurs in response to both mechanical stress and inflammatory processes. In order to validate computational models of atherosclerotic coronary arteries, a novel technique for molding realistic compliant phantom featuring injection-molded inclusions and multiple layers has been developed. This transparent phantom allows for particle image velocimetry (PIV) flow analysis and can supply experimental data to validate computational fluid dynamics algorithms and hypothesis.


2018 ◽  
Vol 846 ◽  
pp. 210-239
Author(s):  
Vinicius M. Sauer ◽  
Fernando F. Fachini ◽  
Derek Dunn-Rankin

Tubular flames represent a canonical combustion configuration that can simplify reacting flow analysis and also be employed in practical power generation systems. In this paper, a theoretical model for non-premixed tubular flames, with delivery of liquid fuel through porous walls into a swirling flow field, is presented. Perturbation theory is used to analyse this new tubular flame configuration, which is the non-premixed equivalent to a premixed swirl-type tubular burner – following the original classification of premixed tubular systems into swirl and counterflow types. The incompressible viscous flow field is modelled with an axisymmetric similarity solution. Axial decay of the initial swirl velocity and surface mass transfer from the porous walls are considered through the superposition of laminar swirling flow on a Berman flow with uniform mass injection in a straight pipe. The flame structure is obtained assuming infinitely fast conversion of reactants into products and unity Lewis numbers, allowing the application of the Shvab–Zel’dovich coupling function approach.


Sign in / Sign up

Export Citation Format

Share Document