instantaneous flow field
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jason Duguay ◽  
Pascale Biron ◽  
Thomas Buffin-Bélanger

<p>The large-scale turbulent structures that develop at confluences fall into three main categories: vertically orientated (Kelvin-Helmholtz) vortices, large-scale secondary flow helical cells and smaller strongly coherent streamwise orientated vortices. The causal mechanisms of each class, how they interact with one another and their respective contributions to mixing is still unclear. Our investigation emphasises the role played by the instantaneous flow field in mixing at a mesoscale confluence (Mitis-Neigette, Quebec, Canada) by complementing aerial drone observations of turbulent suspended sediment mixing processes with results from a high-resolution eddy-resolved numerical simulation. The high velocity near-surface flow of the main channel (Mitis) separates at the crest of the scour hole before downwelling upon collision with the slower tributary (Neigette). Fed by incursions of lateral momentum of the Mitis, shear generated Kelvin-Helmholtz instabilities expand as they advect along the mixing-interface. As the instabilities shed, water from the deeper Neigette passes underneath the fast, over-topping Mitis, causing a large portion of the Neigette’s discharge to cross under the mixing-interface in a short distance. The remaining flow of the tributary crosses over inside large-scale lateral incursions farther downstream. The downwelling Mitis, upwelling Neigette and recirculatory cell interact to generate coherent streamwise vortical structures which assist in rapidly mixing the waters of the two rivers in the vicinity of the mixing-interface. Evidence of large-scale helical cells were not observed in the flow field. Results suggest that flow interaction with bathymetry, and both vertical and streamwise orientated coherent turbulent structures play important roles in mixing at confluences. Our findings strongly suggest that investigating mixing at confluences cannot be based solely on mean flow field variables as this approach can be misleading. Visualization of a confluence’s mixing processes as revealed by suspended sediment gradients captured in aerial drone imagery complemented with eddy-resolved numerical modelling of the underlying flow is a promising means to gain insights on the role of large-scale turbulent structures on mixing at confluences.</p>


2018 ◽  
Vol 40 ◽  
pp. 05067 ◽  
Author(s):  
Vimaldoss Jesudhas ◽  
Frédéric Murzyn ◽  
Ram Balachandar

This paper presents the results of three-dimensional, unsteady, Improved Delayed Detached Eddy Simulations of an oscillating and a stable hydraulic jump at Froude numbers of 3.8 and 8.5, respectively. The different types of oscillations characterised in a hydraulic jump are analysed by evaluating the instantaneous flow field. The instability caused by the flapping wall-jet type flow in an oscillating jump is distinct compared to the jump-toe fluctuations caused by the spanwise vortices in the shear layer of a stable jump. These flow features are accurately captured by the simulations and are presented with pertinent discussions. The near-bed vortical structures in an oscillating jump is extracted and analysed using the λ2 criterion.


2017 ◽  
Vol 814 ◽  
pp. 547-569 ◽  
Author(s):  
Roberto Muscari ◽  
Giulio Dubbioso ◽  
Andrea Di Mascio

The vortex–body interaction problem, which characterizes the flow field of a rudder placed downstream of a single-blade marine rotor, is investigated by numerical simulations. The particular topology of the propeller wake, consisting of a helicoidal vortex detached from the blade tips (tip vortex) and a longitudinal, streamwise oriented vortex originating at the hub (hub vortex), embraces two representative mechanisms of vortex–body collisions: the tip vortices impact almost orthogonally to the mean plane, whereas the hub vortex travels in the mean plane of the wing (rudder), perpendicularly to its leading edge. The two vortices evolve independently only during the approaching and collision phases. The passage along the body is instead characterized by strong interaction with the boundary layer on the rudder and is followed by reconnection and merging in the middle and far wake. The features of the wake were investigated by the $\unicode[STIX]{x1D706}_{2}$-criterion (Jeong & Hussain, J. Fluid Mech., vol. 285, 1995, pp. 69–94) and typical flow variables (pressure, velocity and vorticity) of the instantaneous flow field; wall pressure spectra were analysed and related to the tip and hub vortices evolution, revealing a non-obvious behaviour of the loading on the rudder that can be related to undesired unsteady loads.


Author(s):  
Xiaodi Wu ◽  
Fu Chen ◽  
Yunfei Wang

For low-pressure turbine, the unsteady disturbances are dominated by relative motions between rotors and stators and the unsteady flow is closely associated with aerodynamic efficiency of low-pressure turbine and engine performance. One of its most important manifestations is the boundary layer separation on the turbine blades by the passing wakes produced by upstream rows of blades. Hence, accurate prediction of the flow physics at low Reynolds number conditions is required to effectively implement flow control techniques which can help mitigate separation induced losses. The present paper concentrates on simulations for boundary layer separation of low-pressure turbine cascade under periodic wakes. In this paper, a multiblock computational fluid dynamics (CFD) code of compressible N-S equations is developed for predicting the phenomenon of boundary layer separation, transition and reattachment using large eddy simulation (LES) in the field of turbomachinery. The large-scale structures can be directly obtained from the solution of the filtered Naiver-Strokes equations and the small-scale structures are modeled by dynamic subgrid-scale model of turbulence. Firstly, unsteady boundary layer separation on a flat plate with adverse pressure gradient is simulated under periodic inflow. The time-averaged field, the phase-averaged field and the instantaneous flow field are presented and analyzed. The separation bubble becomes unstable and the location of transition moves back and forth due to vortex shedding. Secondly, a stator of turbomachinery which is influenced by wakes periodically passing is simulated. The results of the numerical simulations are discussed and compared with experimental data. For the instantaneous flow field, it seems that the spanwise vortices induced by upstream wakes are the primary reason of the initial roll-up of the shear layer and the Kelvin-Helmholtz instability plays an important role in the transition to turbulence which is observed in the separated flow.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Shiming Wang ◽  
Cheng Ren ◽  
Yangfei Sun ◽  
Xingtuan Yang ◽  
Jiyuan Tu

Based on the special application of 90-degree elbow pipe in the HTR-PM, the large eddy simulation was selected to calculate the instantaneous flow field in the 90-degree elbow pipe combining with the experimental results. The characteristics of the instantaneous turbulent flow field under the influence of flow separation and secondary flow were studied by analyzing the instantaneous pressure information at specific monitoring points and the instantaneous velocity field on the cross section of the elbow. The pattern and the intensity of the Dean vortex and the small scale eddies change over time and induce the asymmetry of the flow field. The turbulent disturbance upstream and the flow separation near the intrados couple with the vortexes of various scales. Energy is transferred from large scale eddies to small scale eddies and dissipated by the viscous stress in the end.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Yanhui Wu ◽  
Junfeng Wu ◽  
Gaoguang Zhang ◽  
Wuli Chu

Casing instantaneous pressure measurements and full-annulus unsteady simulations were undertaken to analyze flow characteristics near casing at stable and stall inception conditions in an axial flow compressor rotor, and the objective was to establish its linkage with the stall inception process. The measured flow characteristic at near-stall stable operating conditions was the appearance of rotating instability (RI), which attributed to the activity of an unsteady flow with varying frequency. A similar flow characteristic was found in the simulated near-stall stable flow conditions, and detailed analyses of instantaneous flow field indicated the formation and activity of tip secondary vortex could be flow mechanism for the appearance of RI as far as nonuniform tip loading distribution in measurements was concerned. The measured flow characteristic before spike emergence was still the activity of RI. However, it was submerged into flow field accompany by the emergence of spike. The simulated stall inception process was similar to that from measurement, and further analyses of instantaneous flow field established the causal linkage between RI and stall inception process for the test rotor.


2013 ◽  
Vol 744 ◽  
pp. 211-214
Author(s):  
Hong Meng Li ◽  
Guo Xiu Li ◽  
Yuan Jing Hou ◽  
Yu Song Yu

In this paper, the three-dimensional CFD method is used in numerical simulation of the highly intensified diesel engine intake process. The effect of different intake flow compound modes on the highly intensified diesel engine is studied (Including compounded port with helical and tangential intake port, compounded port with two helical intake ports and compounded port with two tangential intake ports). By contrasting the instantaneous flow field, flow characteristic and inlet ability of the three compound modes, the pattern of influence on the inlet flow characteristics by compound modes is analyzed. The results indicate that the combinations of the intake port greatly affect the swirl rate and the inlet ability. The interference of the two helical intake ports is serious, causing more inlet loss. The two helical intake ports have the weakest inlet ability among the three types of intake ports. However, two helical intake ports can cause higher swirl rate. Two tangential intake ports inlet ability is the most excellent, but its swirl rate is the lowest.


Sign in / Sign up

Export Citation Format

Share Document