The Main Changes and Consequences by Burnup Extensions in PWRs: Some Recommendations for Negative Plant Performance Issue Limitations

Author(s):  
Ivan D. Dobrevski ◽  
Neli N. Zaharieva

The higher duty cores are always attended with the onset of sub-cooled nucleate boiling (SNB) on the fuel cladding surfaces and the initial excess reactivity of core. The impacts of these factors on the chemical environments of the nuclear fuel cladding- and reactor coolant system- surfaces are discussed: The SNB at the cladding surfaces strongly influences the behavior of gases dissolved in cladding water layer phase, causing their stripping out which will favor the creation of oxidizing conditions. It is considered that the creation of oxidizing conditions in the nuclear fuel cladding environment is not a direct boiling consequence but it is a result of the synergic impact of the boiling- and water radiolysis- processes on the Pressurized Water Reactor fuel cladding surface areas. This requires new criteria for corrosion resistance properties of fuel cladding materials. These materials must have high corrosion resistance to oxidizing conditions. If only boric acid as neutron absorber is implemented, the critical boron concentration in coolant increases significantly when implementing an extended fuel cycle. This effect can be limited through application of 10B enriched boric acid or by application of such solid burnable absorbers as Gd2O3 integrated in UO2 fuel. Some recommendations to address negative plant performance issues are given in addition to the results of these investigations.

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4317
Author(s):  
Do Haeng Hur ◽  
Kyeong-Su Kim ◽  
Hee-Sang Shim ◽  
Jinsoo Choi ◽  
Kyu Min Song

The objective of this study was to investigate the behavior of zinc incorporation into newly forming fuel deposits and pre-formed deposits in a simulated pressurized water reactor coolant including 1000 ppm of boron and 2 ppm of lithium at 328 °C. Zinc was incorporated into fuel deposits that were being newly nucleated and grown on nuclear fuel cladding tubes in a zinc-containing coolant. The zinc incorporation resulted in a decrease in the lattice constant of the deposits, which was attributed to the decrease in larger iron content and the corresponding incorporation of smaller zinc in the deposits. However, zinc incorporation was not found, even after the fuel deposits pre-formed before zinc addition were subsequently exposed to the 60 ppb of zinc coolant for 500 h.


2019 ◽  
Vol 63 (2) ◽  
pp. 328-332 ◽  
Author(s):  
Ákos Horváth ◽  
Attila R. Imre ◽  
György Jákli

The Supercritical Water Cooled Reactor (SCWR) is one of the Generation IV reactor types, which has improved safety and economics, compared to the present fleet of pressurized water reactors. For nuclear applications, most of the traditional materials used for power plants are not applicable, therefore new types of materials have to be developed. For this purpose corrosion tests were designed and performed in a supercritical pressure autoclave in order to get data for the design of an in-pile high temperature and high-pressure corrosion loop. Here, we are presenting some results, related to corrosion resistance of some potential structural and fuel cladding materials.


Sign in / Sign up

Export Citation Format

Share Document