Optimizing Project Prioritization Under Budget Uncertainty

Author(s):  
Ali Koc¸ ◽  
David Morton ◽  
Elmira Popova ◽  
Stephen Hess ◽  
Ernie Kee ◽  
...  

We consider a problem commonly faced in the nuclear power industry, involving annual selection of plant capital investments under the constraints of a limited and uncertain budget. When the budget is assumed known, a typical approach to such problems is built on a multi-dimensional knapsack model. This model takes as input the available budget in each year, the stream of liabilities induced by selecting each project, and the profit, i.e., net present value (NPV), of each project. The goal is to select the portfolio of projects with the highest total NPV, while observing the budget constraint for each year, as well as any additional constraints. We show that a portfolio selected in this manner can fail to hedge against uncertainties in the budget. While the budget may be known at the beginning of the planning period, external events can cause this to change as time unfolds, and hence the funds that will actually be allocated over time are typically uncertain. So, we propose a model that forms an optimal priority list of projects, incorporating multiple budget scenarios. The model is applied to example projects from the South Texas Project Nuclear Operating Company (STPNOC).

Author(s):  
Ali Koc¸ ◽  
David Morton ◽  
Elmira Popova ◽  
Ernie Kee ◽  
Drew Richards ◽  
...  

We consider a problem commonly faced in industry, involving annual selection of plant capital investments. A typical approach to such a problem uses a multi-knapsack formulation, which takes as input the available budget in each year, the stream of liabilities induced by selecting each project, and the profit, i.e., net present value, of each project. The goal is to select the portfolio of projects with the highest total net present value, while observing the budget constraint for each year, as well as any additional constraints. A portfolio selected in this manner can fail to hedge against uncertainties in the budget, the liability stream and the profit. So, we propose a model that forms an optimal priority list of projects, incorporating multiple scenarios for these input parameters. Our model is not a simplistic ranking scheme. Structural and stochastic dependencies among the projects are key to our approach. We apply our methods on a set of example projects from South Texas Project Nuclear Operating Company.


Author(s):  
Congjian Wang ◽  
Diego Mandelli ◽  
Shawn St Germain ◽  
Curtis Smith ◽  
David Morton ◽  
...  

Abstract As commercial nuclear power plants (NPPs) pursue extended plant operations in the form of Second License Renewals (SLRs), opportunities exist for these plants to provide capital investments to ensure long-term, safe, and economic performance. Several utilities have already announced their intention to pursue extended operations for one or more of their NPPs via SLR2. The goal of this research is to develop a risk-informed approach to evaluate and prioritize plant capital investments made in preparation for, and during the period of, extended plant operations to support decisions in NPP operations. In order to prioritize project selection via a risk-informed approach we developed a single decision-making tool that integrates safety/reliability, cost, and stochastic optimization models to provide users with data analysis capabilities to more cost effectively manage plant assets. Both stochastic analysis methods — such as Monte Carlo-based sampling strategies — and multi-stage stochastic optimization strategies are employed to provide priority lists to decision-makers in support of risk-informed decisions. We applied the proposed method to a trial application of projected replacement/refurbishment expenditures for plant capital assets (i.e., structures, systems, and components [SSCs]). The objective is to optimize the SSC replacement/refurbishment schedule in terms of economic constraints, data uncertainties, and SSC reliability data, as well to generate a priority list for maximizing returns on investment.


2021 ◽  
pp. 59-65
Author(s):  
SERGEY V. BRAGINETS ◽  

On-farm compound feed production from self-produced raw materials is favorable to agricultural enterprises under present-day conditions. The authors carried out a comparative technical and economic study of the conventional and modular small-scale on-farm compound feed plants with a capacity of 2 tons per hour, designed for agricultural enterprises with an average livestock population of 6…8 thousand pigs. The proposed modular plant consists of two modules – the operative storage of raw materials and the main module of grinding and mixing. Modules with installed equipment are delivered and placed on a light foundation, connected by transport equipment and with tanks for raw materials and fi nished products. The conventional factory is a technological line housed in a hangar and used for crushing, metering, and mixing raw materials. It consists of a separator, a hammer mill, weighing equipment, a mixer, containers for raw materials and fi nished products, transport, and aspiration equipment. The technical and economic analysis has shown that the erection and operation of the on-farm modular enterprise require 41% less capital investments than a traditional compound feed plant of the same capacity. The use of a small-scale modular plant will reduce operating costs by 23.8% (from 3094 to 2358 thousand rubles), increase the specifi c economic eff ect from the compound feed production by 1.6% (from 8.64 to 8.78 thousand rubles per ton) and return on margin by 4% (from 10.2 to 10.6%), reduce the payback period by 42% (from 0.8 to 0.46 years), and increase the net present value by 3% (from 66167 to 68216 thousand rubles), as compared to a conventional enterprise. The modular on-farm plants producing loose compound feed with a productivity of up to 3 tons per hour are profi table and economically sound as they can increase production effi ciency of compound feeds for farm animals.`


2005 ◽  
Vol 20 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Francesco d’Auria ◽  
Marco Cherubini ◽  
Maria Galassi ◽  
Nikolaus Muellner

This paper presents an over view of the "scaling strategy", in particular the role played by the counter part test methodology. The recent studies dealing with a scaling analysis in light water reactor with special regard to the VVER 1000 Russian reactor type are presented to demonstrate the phenomena important for scaling. The adopted scaling approach is based on the selection of a few characteristic parameters chosen by taking into account their relevance in the behavior of the transient. The adopted computer code used is RELAP5/Mod3.3 and its accuracy has been demonstrated by qualitative and quantitative evaluation. Comparing experimental data, it was found that the investigated facilities showed similar behavior concerning the time trends, and that the same thermal hydraulic phenomena on a qualitative level could be predicted. The main results are: PSB and LOBI main parameters have similar trends. This fact is the confirmation of the validity of the adopted scaling approach and it shows that PWR and VVER reactor type behavior is very similar. No new phenomena occurred during the counter part test, despite the fact that the two facilities had a different lay out, and the already known phenomena were predicted correctly by the code. The code capability and accuracy are scale-independent. Both character is tics are necessary to permit the full scale calculation with the aim of nuclear power plant behavior prediction. .


2021 ◽  
Vol 321 ◽  
pp. 113-118
Author(s):  
Janette Dragomirová ◽  
Martin T. Palou ◽  
Katalin Gméling ◽  
Veronika Szilágyi ◽  
Ildikó Harsányi ◽  
...  

Heavyweight concrete is mostly used for its shielding properties in the nuclear power plants. These properties can already be influenced by the selection of the input materials. In the present study, concrete samples comprised of four-component binders based on CEM I 42.5 R, blast furnace slag, metakaolin and limestone and a mixture of barite and magnetite aggregate, were investigated. Based on Energy Dispersive X-ray Fluorescence, Neutron Activation, and Prompt-Gamma Activation analyses, three concrete designs were prepared and tested. Mechanical, physical (namely cubic compressive strength, bulk density, longitudinal deformation, and dynamic modulus of elasticity) and thermal properties (thermal conductivity coefficient, specific heat capacity, and thermal diffusivity), which should be influenced by the long-term exposure to irradiation were investigated. Presented results confirmed that the prepared samples are heavyweight concrete with bulk density higher than 3400 kg.m-3 with a low level of longitudinal deformation (between 0.265 ‰ and 0.352 ‰). All the prepared samples belong to the C 35/45 concrete strength class.


SEG Discovery ◽  
2001 ◽  
pp. 1-16
Author(s):  
DEBORAH LORD ◽  
MIKE ETHERIDGE ◽  
MARCUS WILLSON ◽  
GREG HALL ◽  
PHILLIP UTTLEY

ABSTRACT Research is underway to develop a range of methods for assessing and managing exploration risk, progress, and value. As part of the research, a collaborative project was undertaken by SRK Consulting, working with Placer Granny Smith (the operating company of the Granny Smith Joint Venture owned by Placer Dome Asia Pacific, 60%, and Delta Gold, 40%) and Placer Dome Asia Pacific, to review and quantify exploration success in a mature program that has delivered several mines. In particular, an objective was to develop a measurement technique that is more commercially robust and informative than the traditional “cost per resource ounce discovered” method. The project reviewed gold exploration over the past 13 years in the Laverton district of Western Australia. Placer Granny Smith has spent AUD$52 million (about US$30 million at recent exchange rates) defining 12 deposits with combined resources of more than 10 Moz (310 tonnes) of gold. Exploration centered on the Archean Granny Smith gold deposit, and was primarily targeted at outlining additional resources to feed through the Granny Smith mill. At an overall cost per resource ounce of less than US$3, this has clearly been a successful program. However, our analysis demonstrates that this figure fails to provide a complete value picture, and that the program could have delivered even greater value to the participating companies. While the quantitative results of the review are specific to the Laverton district, the methodology can be applied to near-mine, advanced, and grassroots exploration programs for any deposit style in any geologic environment. Key outcomes of the review are as follows: Measuring exploration success in terms of the net present value of the deposit outlined produces a markedly different and arguably more commercially realistic outcome than measuring it in relation to the average cost of resources defined.Early recognition and prompt drill testing of key targets is critical in optimizing opportunities and realizing exploration value. Indeed, the principal destroyer of value in exploration is spending too much time and money prior to drill testing the best targets in any area.Continual and robust ranking of exploration targets should be undertaken. Exploration should aim to rapidly identify and systematically test the best exploration targets, rather than systematically exploring the project areas. Especially in the current climate of a depressed resources sector, the exploration industry needs to compete aggressively for the investor’s dollar. The industry needs more robust and quantitative methodologies for measuring exploration effectiveness, and for informing management, investors, and shareholders of exploration risk, reward, value, and progress to discovery. The probabilistic methods described below provide such a framework.


2019 ◽  
Vol 186 (4) ◽  
pp. 524-529
Author(s):  
Si Young Kim

Abstract The intercomparison test is a quality assurance activity performed for internal dose assessment. In Korea, the intercomparison test on internal dose assessment was carried out for nuclear facilities in May 2018. The test involved four nuclear facilities in Korea, and seven exposure scenarios were applied. These scenarios cover the intake of 131I, a uranium mixture, 60Co and tritium under various conditions. This paper only reviews the participant results of three scenarios pertinent to the operation of nuclear power plants and adopts the statistical evaluation method, used in international intercomparison tests, to determine the significance values of the results. Although no outliers were established in the test, improvements in the internal dose assessment procedure were derived. These included the selection of intake time, selection of lung absorption type according to the chemical form and consideration of the contribution of previous intake.


Sign in / Sign up

Export Citation Format

Share Document