Recirculation Pump Speed Control System Upgrades in Nuclear Boiling Water Reactors

Author(s):  
James W. Morgan

The nuclear power industry is faced with determining what to do with equipment and instrumentation reaching obsolescence and selecting the appropriate approach for upgrading the affected equipment. One of the systems in a nuclear power plant that has been a source of poor reliability in terms of replacement parts and control performance is the reactor recirculation pump speed/ flow control system for boiling water reactors (BWR). All of the operating BWR-3 and BWR-4’s use motor-generator sets, with a fluid coupled speed changer, to control the speed of the recirculation water pumps over the entire speed range of the pumps. These systems historically have had high maintenance costs, relative low efficiency, and relatively inaccurate speed control creating unwanted unit de-rates. BWR-5 and BWR-6 recirculation flow control schemes, which use flow control valves in conjunction with two-speed pumps, are also subject to upgrades for improved performance and reliability. These systems can be improved by installing solid-state adjustable speed drives (ASD), also known as variable frequency drives (VFD), in place of the motor-generator sets and the flow control valves. Several system configurations and ASD designs have been considered for optimal reliability and return on investment. This paper will discuss a highly reliable system and ASD design that is being developed for nuclear power plant reactor recirculation water pump controls. Design considerations discussed include ASD topology, controls architecture, accident, transient and hydraulic analyses, potential reactor internals modifications, installation, demolition and economic benefits.

Author(s):  
Jianfeng Yang ◽  
Lixin Yu ◽  
Byounghoan Choi

Reactor internals important to nuclear power plant safety shall be designed to accommodate steady-state and transient vibratory loads throughout the service life of the reactor. Operating experience has revealed failures of reactor internals in both pressurized water reactors (PWRs) and boiling water reactors (BWRs) due to flow-induced vibrations (FIVs). U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide 1.20 presents a Comprehensive Vibration Assessment Program (CVAP) that the NRC staff considers acceptable for use in verifying the structural integrity of reactor internals for FIV prior to commercial operation. A CVAP supports the NRC reviews of applications for new nuclear reactor construction permits or operating licenses under 10 CFR Part 50, as well as design certifications and combined licenses that do not reference a standard design under 10 CFR Part 52. The overall CVAP should be implemented in conjunction with preoperational and initial startup testing. For prototype reactor internals, the comprehensive program should consist of a vibration and fatigue analysis, a vibration measurement program, an inspection program, and a correlation of their results. Validation and benchmarking processes should be integrated into the CVAP throughout each individual program. Based on the authors’ experiences in Advanced Boiling Water Reactor and AP1000® CVAPs and based on detailed reviews of the U.S. Evolutionary Power Reactor and the U.S. Advanced Pressurized Water Reactor CVAPs, this article summarizes the essential CVAP validation and benchmarking processes with proper consideration of bias errors and random uncertainties. This article provides guidance to a successful CVAP that satisfies the NRC requirements and ensures the reliability of the evaluation of potential adverse flow effects on nuclear power plant components.


Author(s):  
Salah K. Kanaan ◽  
Amer Omanovic

In 2004, a decision was made to perform a modernization and a new power uprate of unit 2 at Oskarshamn nuclear power plant in Sweden. Among the most important reasons for this decision were new safety regulations from Swedish Radiation Safety Authority and ageing of important components. A project was established and became the largest nuclear power modernization in the world. The modernization led to the need of analysing the auxiliary power system to ensure that it could supply the unit after the uprate, given tolerances on current, voltage and frequency. During the process of developing models for the diesel generator sets, it turned out that the suppliers could not deliver enough satisfactory material for modelling the diesel engines, the speed controllers and the magnetization systems. Therefore, Oskarshamn nuclear power plant with the help of the manufacturers of the diesel generator sets carried out additional measurements in order to collect data for modelling. Based on electric circuit diagrams provided by the manufacturers, block diagrams of the magnetization systems were made. For the speed controllers, no information was available at all so it was assumed that the controller was of PI-type. The parameters of the magnetization systems and the speed controllers were then tuned using the measurement results. Finally, a comparison between simulated results and the measurement results were made, showing good agreement. This is especially true in the most commonly used operating interval of the diesel generator sets.


Radiocarbon ◽  
2014 ◽  
Vol 56 (3) ◽  
pp. 1107-1114 ◽  
Author(s):  
Zhongtang Wang ◽  
Dan Hu ◽  
Hong Xu ◽  
Qiuju Guo

Atmospheric CO2 and aquatic water samples were analyzed to evaluate the environmental 14C enrichment due to operation of the Qinshan nuclear power plant (NPP), where two heavy-water reactors and five pressurized-water reactors are employed. Elevated 14C-specific activities (2–26.7 Bq/kg C) were observed in the short-term air samples collected within a 5-km radius, while samples over 5 km were close to background levels. The 14C-specific activities of dissolved inorganic carbon (DIC) in the surface seawater samples ranged from 196.8 to 206.5 Bq/kg C (average 203.4 Bq/kg C), which are close to the background value. No elevated 14C level in surface seawater was found after 20 years of operation of Qinshan NPP, indicating that the 14C discharged was well diffused. The results of the freshwater samples show that excess 14C-specific activity (average 17.1 Bq/kg C) was found in surface water and well water samples, while no obvious 14C increase was found in drinking water (groundwater and tap water) compared to the background level.


Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 754-761 ◽  
Author(s):  
Ede Hertelendi ◽  
György Uchrin ◽  
Peter Ormai

We present results of airborne 14C emission measurements from the Paks PWR nuclear power plant. Long-term release of 14C in the form of carbon dioxide or carbon monoxide and hydrocarbons were simultaneously measured. The results of internal gas-proportional and liquid scintillation counting agree well with theoretical assessments of 14C releases from pressurized water reactors. The mean value of the 14C concentration in discharged air is 130Bqm-3 and the normalized release is equal to 740GBq/GWe · yr. > 95% of 14C released is in the form of hydrocarbons, ca 4% is apportioned to CO2, and <1% to CO. Tree-ring measurements were also made and indicated a minute increase of 14C content in the vicinity of the nuclear power plant.


2009 ◽  
Vol 7 (1) ◽  
pp. 67-73 ◽  
Author(s):  
In-Kyu Choi ◽  
Jong-An Kim ◽  
Chang-Ki Jeong ◽  
Joo-Hee Woo ◽  
Ji-Young Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document