Theoretical Calculation of the Critical Heat Flux in Annular Upward Flow in Vertical Narrow Rectangular Channels

Author(s):  
Dongxiao Du ◽  
Guanghui Su ◽  
Suizheng Qiu

The present paper has developed a mathematical separated flow model for annular upward flow in vertical narrow rectangular channels to predict the critical heat flux. The theoretical model is based on fundamental conservation principles: the mass, momentum, and energy conservation equation of liquid film and the momentum conservation equation of vapor core together with a set of closure relationships (such as entrainment rate, deposition rate, interfacial shear stress and initial entrainment fraction at the onset of annular flow). The predicted results are compared with the experimental data and fairly good agreement between them is achieved. By numerically solving the equations, liquid film thickness, liquid film velocity in the liquid film and heat transfer coefficient are obtained. With the applications of the present model, the critical heat flux in the rectangular channel is calculated and analyzed.

2021 ◽  
Vol 140 ◽  
pp. 103901
Author(s):  
Meiyue Yan ◽  
Zaiyong Ma ◽  
Liangming Pan ◽  
Wei Liu ◽  
Qingche He ◽  
...  

2002 ◽  
Vol 39 (7) ◽  
pp. 736-742 ◽  
Author(s):  
Futoshi TANAKA ◽  
Kaichiro MISHIMA ◽  
Tamio KOHRIYAMA ◽  
Yukimitsu OKANO

Author(s):  
Fan Pu ◽  
Suizheng Qiu ◽  
Guanghui Su ◽  
Dounan Jia

The term annular flow is used to describe the configuration of vapor-liquid flow in which part of the liquid travels as a film on the wall and the rest is entrained as drops by the vapor core in the center of the channel. The objective of this paper is to develop a hydrodynamic model for vertical upward annular flow. A separated flow model is developed and the conservations of Mass, Momentum, Energy, entrainment rate correlation in wide range of conditions and interfacial frictional correlation are used to research the flow and heat transfer characteristic of annular flow. The liquid film thickness, liquid film mass flow rate, two-phase heat transfer coefficient pressure along axial position, local velocity profiles along radial position are predicted theoretically. The influence of the mass flux, heat flux on liquid film thickness, heat transfer coefficient etc. are investigated in detail. The critical heat flux are also predicted in vertical upward round tube according to the theory that the dryout in vertical annular flow emerges at the point where the film is depleted due to the integrating result of entrainment, deposition and evaporation. The influence of mass flux, inlet mass quality and tube diameter on critical heat flux is also predicted in this paper. Finally the predicted result of critical heat flux is compared with experimental data, and the theoretical CHF values are higher than that of experimental data, with error within 30%.


2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Futoshi Tanaka ◽  
Takashi Hibiki ◽  
Kaichiro Mishima

The effect of heated length on critical heat flux (CHF) in thin rectangular channels under atmospheric pressure has been studied. CHF in small channels has been widely studied in the last decades but most of the studies are based on flow in round tubes and number of studies focused on rectangular channels is relatively small. Although basic triggering mechanisms, which lead to CHF in thin rectangular channels, are similar to that of tubes, applicability of thermal hydraulic correlations developed for tubes to rectangular channels are questionable since heat transfer in rectangular channels are affected by the existence of nonheated walls and the noncircular geometry of channel circumference. Several studies of CHF in thin rectangular channels have been reported in relation to thermal hydraulic design of research reactors and neutron source targets and correlations have been proposed, but the studies mostly focus on geometrical conditions of the application of interest and therefore effect of channel parameters exceeding their interest is not fully understood. In his study, CHF data for thin rectangular channels have been collected from previous studies and the effect of heated length on CHF was examined. Existing correlations were verified with data with positive quality outlet flow but none of the correlations successfully reproduced the data for a wide range of heated lengths. A new CHF correlation for quality region applicable to a wide range of heated lengths has been developed based on the collected data.


1964 ◽  
Vol 86 (1) ◽  
pp. 12-22 ◽  
Author(s):  
F. E. Tippets

High-speed motion pictures (4300 pictures/sec) of boiling water flow patterns in conditions of forced flow at 1000 psia pressure in a vertical heated rectangular channel were taken over the range of mass velocities from 50 to 400 lb/sec-ft2, fluid states from bulk subcooled liquid flow to bulk boiling flow at 0.66 steam quality, and heat fluxes up to and including the critical heat flux level. Eighty critical heat flux determinations were made in the course of the experiment at 1000 psia in conditions of bulk boiling. The motion pictures provide photographic evidence of the general arrangement of the flow in conditions of bulk boiling at high pressure with heat fluxes near and including the critical heat flux level.


Sign in / Sign up

Export Citation Format

Share Document