An Experimental Study on Air-Water Two-Phase Flow in Pebble Beds

Author(s):  
Bofeng Bai ◽  
Maolong Liu ◽  
Xiaojie Zhang

An experimental study was conducted on the air-water two-phase flow patterns and pressure drop in the bed of rectangular cross section containing spheres of regular distribution. Three kinds of glass spheres with different diameters (3mm, 6mm and 8mm) were used for the establishment of the test section. By means of visual observations of the two-phase flow through the test section, it was discovered that five different flow patterns occur in the experimental parameter ranges, namely bubbly flow, bubbly-slug flow, slug flow, slug-annular flow and annular flow. A correlation for bubble and slug diameter in packed beds was proposed, which is an extension of the Tung/Dhir model, Jamialahmadi’s model and Schmidt’s model. Three correlations were proposed to calculate the void friction of flow regime transition in bubble flow, slug flow and annular flow based on the bubble model in the pore region. The experimental result shows that the modified Tung and Dhir’s model of flow pattern transition is a better agreement with the experimental data compared with Tung and Dhir’s model.

Author(s):  
Bai Bofeng ◽  
Liu Maolong ◽  
Su Wang ◽  
Zhang Xiaojie

An experimental study was conducted on the air-water two-phase flow patterns in the bed of rectangular cross sections containing spheres of regular distribution. Three kinds of glass spheres with different diameters (3 mm, 6 mm, and 8 mm) were used for the establishment of the test section. By means of visual observations of the two-phase flow through the test section, it was discovered that five different flow patterns occurred within the experimental parameter ranges, namely, bubbly flow, bubbly-slug flow, slug flow, slug-annular flow, and annular flow. A correlation for the bubble and slug diameter in the packed beds was proposed, which was an extended expression of the Tung/Dhir model, Jamialahmadi’s model, and Schmidt’s model. Three correlations were proposed to calculate the void friction of the flow pattern transition in bubble flow, slug flow, and annular flow based on the bubble model in the pore region. The experimental result showed that the modified Tung and Dhir model of the flow pattern transition was in better agreement with the experimental data compared with Tung and Dhir’s model.


Author(s):  
Hideo Ide ◽  
Kentaro Satonaka ◽  
Tohru Fukano

Experiments were performed to obtain, analyze and clarify the mean void fraction, the mean liquid holdup, and the liquid slug velocity and the air-water two-phase flow patterns in horizontal rectangular microchannels, with the dimensions equal to 1.0 mm width × 0.1 mm depth, and 1.0 mm width × 0.2 mm depth, respectively. The flow patterns such as bubble flow, slug flow and annular flow were observed. The microchannel data showed similar data patterns compared to those in minichannels with the width of 1∼10mm and the depth of 1mm which we had previously reported on. However, in a 1.0 × 0.1 mm microchannel, the mean holdup and the base film thickness in annular flow showed larger values because the effects of liquid viscosity and surface tension on the holdup and void fraction dominate. The remarkable flow characteristics of rivulet flow and the flow with a partial dry out of the channel inner wall were observed in slug flow and annular flow patterns in the microchannel of 0.1 mm depth.


Author(s):  
H. Yang ◽  
T. S. Zhao ◽  
P. Cheng

Characteristics of gas-liquid two-phase flow patterns in a miniature square cross-section channel having a gas permeable sidewall have been investigated visually using a high-speed motion analyzer. The problem under consideration is encountered in the design of Direct Feed Methanol Fuel Cells (DMFC). The test section was a horizontally oriented rectangular transparent (Lucite material) channel with its lower wall consisting of a porous plate. Liquid was fed into the test section from its entrance, while gas was injected uniformly into the test section along the lower porous sidewall. The visual study shows the typical flow patterns found in the test section include bubbly flow, plug flow, slug flow, and annular flow. However, unlike the conventional co-current two-phase flow in a channel with gas and liquid uniformly entering from one of its ends, for the flow configuration considered in this work, it was found that two or three of the above mentioned flow patterns appeared simultaneously at different locations of the channel. The length of each flow pattern varied with the flow rates of liquid and gas. A distinct feature of annular flow for the present flow configuration is that small bubbles were continuously generated from the porous plate, which grew by blowing up the liquid film, formed a semi-sphere shape, and then ruptured and released gas into the core flow.


1994 ◽  
Vol 59 (12) ◽  
pp. 2595-2603
Author(s):  
Lothar Ebner ◽  
Marie Fialová

Two regions of instabilities in horizontal two-phase flow were detected. The first was found in the transition from slug to annular flow, the second between stratified and slug flow. The existence of oscillations between the slug and annular flows can explain the differences in the limitation of the slug flow in flow regime maps proposed by different authors. Coexistence of these two regimes is similar to bistable behaviour of some differential equation solutions.


Author(s):  
Claudi Marti´n-Callizo ◽  
Bjo¨rn Palm ◽  
Wahib Owhaib ◽  
Rashid Ali

The present work reports on flow boiling visualization of refrigerant R-134a in a vertical circular channel with internal diameter of 1.33 mm and 235 mm in heated length. Quartz tube with a homogeneous ITO-coating is used allowing heating and simultaneous visualization. Flow patterns have been observed along the heated length with the aid of a digital camera with close-up lenses. From the flow boiling visualization, seven distinct two-phase flow patterns have been observed: Isolated bubbly flow, confined bubbly flow, slug flow, churn flow, slug-annular flow, annular flow, and mist flow. Two-phase flow pattern observations are presented in the form of flow pattern maps. Finally, the experimental flow pattern map is compared to models developed for conventional sizes as well as to a microscale map for air-water mixtures available in the literature, showing a large discrepancy.


2021 ◽  
Vol 53 (1) ◽  
pp. 61-68
Author(s):  
Jiancheng Zhou ◽  
Tianzhou Ye ◽  
Dalin Zhang ◽  
Gongle Song ◽  
Rulei Sun ◽  
...  

Author(s):  
X. H. Yan ◽  
J. Z. Xu ◽  
D. W. Tang

This work presents experiments on the visualization of flow boiling of water in a horizontally placed and uniformly heated micro capillary tube. Three micro capillary tubes of quartz glass with inner diameters of 520, 315 and 242 μm are prepared. Experiments are performed with deionized water over a mass flux range from 39.3 to 362.5kg/m2s, and the inlet temperatures of 30, 45, and 60 °C respectively. By a video system with microscope and high-speed camera, the vapor-water two-phase flow’s patterns are recorded and analyzed. It has been found that periodic change of two-phase flow patterns and dramatic fluctuations of pressure drop occur in the micro capillary tubes. A new arch flow pattern, liquid film evaporating, and liquid droplet have been observed firstly. Bubbly flow has not been observed during our visual experiments for the inner diameter of 242 μm, the flow patterns are only made up of single liquid phase flow and two-phase elongate slug flow. The main flow regimes in these micro-tubes are single-liquid flow, slug flow, and annular flow with liquid film surrounded in the micro-tube with inner diameter of 520 and 315μm. Trends of pressure drop and flow patterns’ transition are compared and the results show that the increasing process of pressure drop is approximately in the single-liquid flow and bubbly flow, while the decreasing process of pressure drop is in the state of annular flow.


Author(s):  
J. L. H. Faccini ◽  
J. Su ◽  
G. D. Harvel ◽  
J. S. Chang

In this paper, we present a hybrid type contrapropagating transmission ultrasonic technique (CPTU) for flow and time averaging ultrasonic transmission intensity void fraction measurements (TATIU) of air-water two-phase flow, which is tested in the new two-phase flow test section mounted recently onto an existing single phase flow rig at the Nuclear Engineering Institute (IEN)/CNEN, Brazil. The circular pipe test section is made of 51.2 mm stainless steel, followed by a transparent extruded acrylic pipe aimed at flow visualization. The two-phase flow rig operates in several flow regimes: bubbly, smooth stratified, wavy stratified and slug flow. The observed flow patterns are compared with the Mandhane et al.’s experimental and Lightstone et al.’s numerical flow regime map for horizontal two phase flows. These flow patterns will be identified by time averaging transmission intensity ultrasonic techniques which have been developed to meet this particular application. A contrapropagating transmission ultrasonic flowmeter is used to measure the flow rate of liquid phase. A pulse-echo TATIU ultrasonic technique used to measure the void fraction of the horizontal test section assembling at IEN is presented. Other flow parameters can be deduced by processing the signals obtained by the CPTU ultrasonic flowmeter and the pulse-echo generator-receiver (TATIU system).


Sign in / Sign up

Export Citation Format

Share Document