Flow Characteristics of Adiabatic Gas-Liquid Two-Phase Flow in a Horizontal Flat Rectangular Microchannel

Author(s):  
Hideo Ide ◽  
Kentaro Satonaka ◽  
Tohru Fukano

Experiments were performed to obtain, analyze and clarify the mean void fraction, the mean liquid holdup, and the liquid slug velocity and the air-water two-phase flow patterns in horizontal rectangular microchannels, with the dimensions equal to 1.0 mm width × 0.1 mm depth, and 1.0 mm width × 0.2 mm depth, respectively. The flow patterns such as bubble flow, slug flow and annular flow were observed. The microchannel data showed similar data patterns compared to those in minichannels with the width of 1∼10mm and the depth of 1mm which we had previously reported on. However, in a 1.0 × 0.1 mm microchannel, the mean holdup and the base film thickness in annular flow showed larger values because the effects of liquid viscosity and surface tension on the holdup and void fraction dominate. The remarkable flow characteristics of rivulet flow and the flow with a partial dry out of the channel inner wall were observed in slug flow and annular flow patterns in the microchannel of 0.1 mm depth.

Author(s):  
Bai Bofeng ◽  
Liu Maolong ◽  
Su Wang ◽  
Zhang Xiaojie

An experimental study was conducted on the air-water two-phase flow patterns in the bed of rectangular cross sections containing spheres of regular distribution. Three kinds of glass spheres with different diameters (3 mm, 6 mm, and 8 mm) were used for the establishment of the test section. By means of visual observations of the two-phase flow through the test section, it was discovered that five different flow patterns occurred within the experimental parameter ranges, namely, bubbly flow, bubbly-slug flow, slug flow, slug-annular flow, and annular flow. A correlation for the bubble and slug diameter in the packed beds was proposed, which was an extended expression of the Tung/Dhir model, Jamialahmadi’s model, and Schmidt’s model. Three correlations were proposed to calculate the void friction of the flow pattern transition in bubble flow, slug flow, and annular flow based on the bubble model in the pore region. The experimental result showed that the modified Tung and Dhir model of the flow pattern transition was in better agreement with the experimental data compared with Tung and Dhir’s model.


Author(s):  
Ryuji Kimura ◽  
Hideo Ide ◽  
Hiroshi Hashiguchi ◽  
Masahiro Kawaji

An optical measurement system was used to investigate the effect of microchannel length on adiabatic gas-liquid two-phase flow characteristics. Experiments were conducted with 146 mm and 1,571 mm long, circular microchannels of 100 micron diameter. Two-phase flow patterns, void fraction, gas and liquid plug lengths and their velocities were measured for two inlet configurations and gas-liquid mixing, i.e., (a) reducer and (b) T-junction. The test section length was found to have a significant effect on the two-phase flow characteristics measured at the same axial location in the microchannel test section typified by the void fraction data. The mean void fraction data obtained in the shorter (146 mm) microchannel with the reducer inlet agreed well with the equation by Kawahara and Kawaji which was previously proposed. On the other hand, the mean void fraction obtained at 36 mm from the inlet in the longer (1,571 mm) microchannel corresponded well with the homogeneous flow model and Armand’s equation for both reducer and T-junction inlet configurations. In the present experimental ranges of superficial gas velocity, jG = 0.03 ∼ 14 m/s, and superficial liquid velocity, jL = 0.04∼0.7 m/s, the gas and liquid plugs obtained in the longer microchannel had relatively shorter lengths and higher velocities than those in the shorter channel. Thus, both the microchannel length and inlet geometry were found to affect the two-phase flow characteristics in a microchannel.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
M. Kawaji ◽  
K. Mori ◽  
D. Bolintineanu

The effects of gas-liquid inlet geometry and mixing method on adiabatic gas-liquid two-phase flow in a microchannel of 100 μm diameter have been investigated using a T-junction inlet with the same internal diameter as the microchannel. Two-phase flow patterns, void fraction, and friction pressure drop data obtained with the T-junction inlet were found to be significantly different from those obtained previously with a reducer inlet. For the T-junction inlet, the two-phase flow patterns in the microchannel were predominantly intermittent flows with short gas and liquid plugs/slugs flowing with nearly equal velocities. The void fraction data then conformed nearly to that of a homogeneous flow model, and the two-phase friction multiplier data could be described by the Lockhart–Martinelli correlation applicable to larger channels. However, when a reducer inlet was used previously and the diameter of the inlet section was much larger than that of the microchannel, an intermittent flow of long gas slugs separated by long liquid slugs became prevalent and the void fraction decreased to values far below the homogeneous void fraction. The differences in the two-phase flow characteristics between a T-junction inlet and reducer inlet were attributed to the differences in the gas bubble/slug generation mechanisms.


2021 ◽  
Author(s):  
Faraj Ben Rajeb ◽  
Syed Imtiaz ◽  
Yan Zhang ◽  
Amer Aborig ◽  
Mohamed M. Awad ◽  
...  

Abstract Slug flow is one of the most common flow patterns in non-Newtonian two-phase flow in pipes. It is a very common occurrence in gas-liquid two-phase flow in the pipe. Usually, it is an unfavorable flow pattern due to its unsteady nature, intermittency as well as high pressure drop. The differences between slug flow and elongated bubble flow are not clear because usually these two types of flow combined under one flow category. In general, these two-phase flow regimes are commonly defined as intermittent flow. In the present study, pressure gradient, and wave behavior in slug flow have been investigated depending on experimental work. In addition, void fraction has been estimated regarding available superficial liquid and gas velocities. The experimental records of superficial velocities of gas and liquid for slug flow and other flow patterns is used to create flow regime map for the gas non-Newtonian flow system. The effect of investigated flow regime velocities for non-Newtonian/gas flow on pressure drop and void fraction is reported. Pressure drop has been discovered to be reduced in slug flow more than other flow patterns due to high shear thinning behavior.


Author(s):  
M. Kawaji ◽  
P. M.-Y. Chung

Microfluidics is a rapidly developing area of research with great potential for a wide range of applications in many fields. One area of microfluidics is gas-liquid two-phase flow in microchannels, which is important for the development of microreactors, lab-on-a-chip systems, micro heat exchangers and micro-heat pipes, among others, that are highly relevant to industry. Recently, much interest has also been shown toward studying the two-phase flow in micro fuel cells. This keynote paper presents a state-of-the-art review of past and present research on adiabatic two-phase flow in minichannels and microchannels, which are considered to have channel diameters between 250 μm–6 mm, and less than 250 μm, respectively. From this review, certain differences between minichannels and microchannels are identified. These notable differences are also explained, based on some of our recent experiments on two-phase flow in microchannels. Our experiments have been performed using several microchannels to determine the effects of the microchannel diameter and shape on the adiabatic two-phase flow of nitrogen gas and de-ionized water. The effect of channel geometry was examined by characterizing the two-phase flow in a circular and square microchannel of similar hydraulic diameter. A video camera was used to capture images of the gas-liquid interfacial structure. From the video recordings, it became clear that the channel size strongly influences the two-phase flow patterns occurring in the circular microchannel. The flow pattern was predominantly intermittent, exhibiting alternating sequences of liquid and gas slugs. Only slug flow was observed in the microchannel for all flow conditions tested. There were no instances of bubbly flow, churn flow, slug-annular or annular flow, as reported for minichannels. Instead, four new sub-classes of slug flow were defined to better describe the interfacial structure in the time average sense: slug-ring flow, ring-slug flow, semi-annular flow and multiple flow. The time-averaged void fraction was estimated from the recorded images of the two-phase flow structure. It was found that as the channel diameter decreased, the void fraction data deviated more from those obtained for minichannels. A new void fraction correlation was developed for both the circular and square microchannels, which differs significantly from those developed for minichannels. In both microchannels, the two-phase pressure drop was best predicted by treating the two phases as being non-homogeneous and having a large velocity difference. This result was consistent with the occurrence of slug flow and significant departure of the average void fraction from those in minichannels. A possible explanation for the strong deviation of void fraction data in microchannels from the correlations applicable to minichannels is offered based on a phenomenological examination of the flow structure. Regarding the effect of microchannel geometry, the experimental results showed little difference in the void fraction and pressure drop data. However, the two-phase flow regime maps were not the same between the circular and square microchannels. The transition boundaries of the sub-categories of slug flow were noticeably shifted. The region of ring-slug flow in the circular microchannel disappeared in the square microchannel, which can be attributed to the suppression of the liquid-ring film due to the accumulation of liquid in the corners of the square microchannel.


Author(s):  
Bofeng Bai ◽  
Maolong Liu ◽  
Xiaojie Zhang

An experimental study was conducted on the air-water two-phase flow patterns and pressure drop in the bed of rectangular cross section containing spheres of regular distribution. Three kinds of glass spheres with different diameters (3mm, 6mm and 8mm) were used for the establishment of the test section. By means of visual observations of the two-phase flow through the test section, it was discovered that five different flow patterns occur in the experimental parameter ranges, namely bubbly flow, bubbly-slug flow, slug flow, slug-annular flow and annular flow. A correlation for bubble and slug diameter in packed beds was proposed, which is an extension of the Tung/Dhir model, Jamialahmadi’s model and Schmidt’s model. Three correlations were proposed to calculate the void friction of flow regime transition in bubble flow, slug flow and annular flow based on the bubble model in the pore region. The experimental result shows that the modified Tung and Dhir’s model of flow pattern transition is a better agreement with the experimental data compared with Tung and Dhir’s model.


2005 ◽  
Vol 27 (1) ◽  
pp. 59-65
Author(s):  
Bui Dinh Tri

This paper will present a method to identify flow patterns (bubble & slug flow) in vertical air-water two-phase flow by void fraction measurement (using an impedance probe) at Inst. of Mechanics Hanoi.


1994 ◽  
Vol 59 (12) ◽  
pp. 2595-2603
Author(s):  
Lothar Ebner ◽  
Marie Fialová

Two regions of instabilities in horizontal two-phase flow were detected. The first was found in the transition from slug to annular flow, the second between stratified and slug flow. The existence of oscillations between the slug and annular flows can explain the differences in the limitation of the slug flow in flow regime maps proposed by different authors. Coexistence of these two regimes is similar to bistable behaviour of some differential equation solutions.


2004 ◽  
Vol 126 (4) ◽  
pp. 546-552 ◽  
Author(s):  
Peter M.-Y. Chung ◽  
Masahiro Kawaji ◽  
Akimaro Kawahara ◽  
Yuichi Shibata

An adiabatic experiment was conducted to investigate the effect of channel geometry on gas-liquid two-phase flow characteristics in horizontal microchannels. A water-nitrogen gas mixture was pumped through a 96 μm square microchannel and the resulting flow pattern, void fraction and frictional pressure drop data were compared with those previously reported by the authors for a 100 μm circular microchannel. The pressure drop data were best estimated using a separated-flow model and the void fraction increased non-linearly with volumetric quality, regardless of the channel shape. However, the flow maps exhibited transition boundaries that were shifted depending on the channel shape.


Author(s):  
Sujin Yeom ◽  
Seung S. Lee ◽  
Sang Yong Lee

This paper presents a micro-fluidic device which generates micro-bubbles, ranging from 70μm to 160μm in diameter, and two-phase flow characteristics in the device were tested. The device is composed of three sub-channels: a centered gas channel (10μm×50μm) and two liquid channels (both with 85μm×50μm) on each side of the gas channel. Micro-bubbles are generated by co-flow of gas and liquid at the exit of the gas channel when the drag force becomes larger than the surface tension force as bubbles grow. Methanol and a gas mixture of CO2 and N2 were used as the working fluid. Since the flow rate of gas was very small, the gas momentum effect was considered negligible. Thus, in the present case, the controlling parameters were the liquid superficial velocity and the inlet pressure of the gas. A high speed camera was used to record two-phase flow patterns and micro-bubbles of the device. To confine the ranges of the micro-bubbles generation, two-phase flow patterns in the device is observed at first. Four different flow patterns were observed: annular, annular-slug, slug, and bubbly flow. In bubbly flows, uniform-sized micro-bubbles were generated, and the operating ranges of the liquid superficial velocity and the gas pressure were below 0.132 m/s and 0.7 bar, respectively. Diameters of the micro-bubbles appeared smaller with the higher superficial liquid velocity and/or with a lower gas pressure. Experimental results showed that, with the gas pressure lower than a certain level, the sizes of micro-bubbles were almost insensitive to the gas pressure. In such a ranges, the micro-bubble diameters could be estimated from a drag coefficient correlation, CDw = 31330/Re3, which is different from the correlations for macro-channels due to a larger wall effect with the micro-channels. In the latter part of the paper, as a potential of application of the micro-bubble generator to gas analysis, dissolution behavior of the gas components into the liquid flow was examined. The result shows that the micro-bubble generator can be adopted as a component of miniaturized gas analyzers if a proper improvement could be made in controlling the bubble sizes effectively.


Sign in / Sign up

Export Citation Format

Share Document