Experimental Modeling of Light Phase Effect on Heat Transfer in Rod Bundle

Author(s):  
O. N. Kashinsky ◽  
P. D. Lobanov ◽  
A. S. Kurdyumov ◽  
N. A. Pribaturin ◽  
S. E. Volkov

Experiments in two-phase gas-liquid flow in a vertical bundle of rods were performed. The void fraction distribution and heat transfer from heated central rod were considered. Comparisons for cases of single phase and two-phase flows are presented. Gas addition to the flow results in heat transfer enhancement. The position of gas injection point plays a significant role on heat transfer characteristics. A non uniform gas phase distribution around the central rod of the bundle was obtained.

Author(s):  
Haden Hinkle ◽  
Deify Law

Two-phase (non-boiling) flows have been shown to increase heat transfer in channel flows as compared with single-phase flows. The present work explores the effects of gas phase distribution such as volume fraction and bubble size on the heat transfer in upward vertical channel flows. A two-dimensional (2D) channel flow of 10 cm wide by 100 cm high is studied numerically. Numerical simulations are performed using the commercial computational fluid dynamics (CFD) code ANSYS FLUENT. The bubble size is characterized by the Eötvös number. The volume fraction and the Eötvö number are varied parametrically to investigate their effects on Nusselt number of the two-phase flows. All simulations are compared with a single-phase flow condition.


Author(s):  
Zeses E. Karoutas ◽  
Yixing Sung ◽  
Yutung R. Chang ◽  
Gennady A. Kogan ◽  
Paul F. Joffre

This paper provides single and two phase rod bundle data to support verification of heat transfer models being used in steaming rate and crud model predictions for rod bundles. The effort to summarize this work was supported by the EPRI Robust Fuel Program and is defined in more detail in EPRI report 1003383. Subcooled boiling tests were performed by Combustion Engineering (CE) in early 1980s to provide insight on heavy crud deposits and fuel failures observed on peripheral rods for bundles in Maine Yankee cycle 4. Two 5×5 tests were performed at the Columbia University Heat Transfer Research Facility simulating the peripheral region of adjacent CE 14×14 fuel bundles for two different perimeter strip geometries. The test conditions were at typical reactor pressure, temperature, and heat flux. The rods were 7’ in heated length and were electrically heated with a uniform axial power shape. There were no mixing vanes on the spacer grids. Thermocouples were placed on the hot rod in the center of the test section and on an adjacent rod at 4 different axial levels. Thermocouples were also located in the center of the subchannels at the end of the test section. Boiling curves were generated over a range of test conditions (system pressure, inlet temperature, and flow rate) by plotting rod surface temperature versus heat flux. The boiling curves covered single phase, subcooled boiling, bulk boiling and DNB conditions. The data from the boiling curves were reduced and evaluated with the VIPRE thermal hydraulic code. Clad temperature predictions were made with VIPRE based on available heat transfer correlations for comparison to clad temperature measurements. These heat transfer correlations include the Dittus Boelter correlation for single phase flow, the Jens Lottes, Thom and Chen correlations for two phase flow conditions (subcooled boiling). The VIPRE predictions of the hot rod average surface temperature, based on the Dittus-Boelter correlation with a grid enhancement factor for single-phase forced convection and the Thom correlation for nucleate boiling, gave the best agreement with the rod bundle test data among all the available modeling options. It was concluded that current heat transfer models used in TH codes, are adequate for average steaming rate calculations supporting Axial Offset Anomalies (AOA) evaluations, as long as the appropriate grid enhancement factor is utilized for the spacer grids in the analysis. However, further testing and modeling may be needed to simulate local grid effects and hot spots downstream of spacer grids.


Author(s):  
Masahiro Osakabe ◽  
Sachiyo Horiki

To study the enhancement and degradation mechanism of impinging two-phase heat transfer, air/water two-phase jet was applied on the cooling of copper surface of 30 mm in diameter. The two-phase jet impinged vertically on the horizontal heat transfer surface from capillary nozzle holes of 2, 4 and 6 mm in inner diameter. The non-dimensional heat transfer coefficient (HTC) was defined as the experimental HTC divided with the predictive HTC where the superficial two-phase velocity jG+jL and the physical properties of water were used in the empirical HTC correlation for single-phase flow. The larger non-dimensional HTC and stagnation pressure fluctuation were obtained with the nozzle of larger diameter. The larger nozzle could provide the more significant enhancement of heat transfer and pressure fluctuation with an addition of air. It was considered that the enhancement of heat transfer was due to the stimulation of thermal boundary layer with an addition of air.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Y. S. Muzychka ◽  
E. J. Walsh ◽  
P. Walsh

Heat transfer enhancement using segmented nonboiling gas-liquid flow is examined. Segmentation results in a two phase flow of liquid/gas having a constant liquid fraction; i.e., no phase change occurs. In this flow configuration, enhanced heat transfer occurs as a result of a shorter effective thermal length due to internal fluid circulation in the liquid plugs. A simple theory for laminar segmented flows is developed based on scaled Graetz theory and comparisons made with existing published data from the literature and new experimental data obtained in a companion study. The proposed model is valid for an isothermal tube wall provided that the axial residence time of the flow is such that dimensionless tube length L⋆<0.1.


Equipment ◽  
2006 ◽  
Author(s):  
Leonid L. Vasiliev ◽  
A. Zhuravlyov ◽  
A. Shapovalov ◽  
L. L. Vasiliev, Jr

Sign in / Sign up

Export Citation Format

Share Document