spacer grids
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 37)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Namgyu Park ◽  
Youngik Yoo ◽  
Taesoon Kim ◽  
Sangyoun Jeon

Abstract This paper proposes a computation technique to develop a simplified nonlinear model for a typical nuclear fuel assembly. Because more than a hundred fuel assemblies are packed in the reactor, simplistic model generation is critical to evaluate the motion during an anticipated event such as earthquake. Two straight beams are introduced to simplify the fuel assembly, and the beam properties are moderately defined to represent the skeleton structure and a bundle of slender fuel rods. Because nonlinearity is caused by the interaction between the rods and the spacer grids in the skeleton structure, the two beams are connected with multilinear joints that characterize the mechanical interaction between them. An equation of motion for the model is provided, and the degree of the freedom of the model can be reduced by using a few major modes of the beams. Significant mechanical parameters must be defined reasonably, so a method is proposed to identify unknown parameters through a deterministic calculation and an optimization process. All the information, including the identified parameters, are utilized to develop a nonlinear finite element model with a commercial code. The performance of the model is compared with the test results.


Author(s):  
Kyung Ha Ryu ◽  
Yong-Hoon Shin ◽  
Jaehyun Cho ◽  
Jungho Hur ◽  
Tae Hyun Lee ◽  
...  

2021 ◽  
Vol 8 ◽  
pp. 3-16
Author(s):  
Petr S. Zavyalov ◽  
Dmitry R. Khakimov ◽  
Anna A. Guschina ◽  
Alexey V. Beloborodov ◽  
Evgeny V. Vlasov

The work is devoted to the application of diffractive optical elements in systems using the structured illumination method to the geometric parameters inspection of industrial articles. The objects of inspection in these systems are: weapon barrels, fuel pellets, fuel elements, spacer grids, ceramic ring insulators. The used diffractive optical elements are computer-synthesized holograms that focus laser radiation into geometric shapes, the configuration of which is optimally combined with the inspected objects shape.


2021 ◽  
Vol 68 (3) ◽  
pp. 201-208
Author(s):  
S. M. Dmitriev ◽  
A. V. Gerasimov ◽  
A. A. Dobrov ◽  
D. V. Doronkov ◽  
A. P. Zhivoderov ◽  
...  

2021 ◽  
Vol 8 (3A) ◽  
Author(s):  
Higor Fabiano Pereira de Castro ◽  
Guilherme Augusto Moura Vidal ◽  
Tiago Augusto Santiago Vieira ◽  
Vitor Vasconcelos Araújo Silva ◽  
Daniel De Almeida Magalhães Campolina ◽  
...  

Spacer grids are one of main components of a Pressurized Water Reactor (PWR) fuel assembly. They are able to improve heat transfer from rod bundles to the water flow by increasing turbulence and mixture of this flow. On the other hand the pressure drop increases because spacer grids. Experimental and Computational Fluid Dynamics (CFD) analysis have been used to understand how spacer grids affect the water flow. This analysis is important to improve spacer grids thermal-hydraulic performance. This paper aims to investigate numerically and experimentally the water flow through PWR spacer grids. The numerical and experimental procedures have been developed for a 5x5 rod bundle with spacer grids at the Nuclear Technology Development Center (CDTN) in Belo Horizonte, Brazil. At CDTN, measurements of the velocity components are acquired with a 2D LDV (Laser Doppler Velocimetry) system and the numerical results are obtained using ANSYS CFX code. The measurements are obtained at one height downstream from a spacer grid and compared to CFD simulations for a flow rate at Reynolds number of 5.4x104 . Results show good agreement between both methodologies. The great repeatability and low experimental uncertainty evaluated (< 1.24%) in this work can be used to validate other CFD codes.


Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 72
Author(s):  
Nadish Saini ◽  
Igor A. Bolotnov

In the dispersed flow film boiling regime (DFFB), which exists under post-LOCA (loss-of-coolant accident) conditions in pressurized water reactors (PWRs), there is a complex interplay between droplet dynamics and turbulence in the surrounding steam. Experiments have accredited particular significance to droplet collision with the spacer-grids and mixing vane structures and their consequent positive feedback to the heat transfer recorded in the immediate downstream vicinity. Enabled by high-performance computing (HPC) systems and a massively parallel finite element-based flow solver—PHASTA (Parallel Hierarchic Adaptive Stabilized Transient Analysis)—this work presents high fidelity interface capturing, two-phase, adiabatic simulations in a PWR sub-channel with spacer grids and mixing vanes. Selected flow conditions for the simulations are informed by the experimental data found in the literature, including the steam Reynolds number and collision Weber number (Wec={40,80}), and are characteristic of the DFFB regime. Data were collected from the simulations at an unprecedented resolution, which provides detailed insights into the continuous phase turbulence statistics, highlighting the effects of the presence of droplets and the comparative effect of different Weber numbers on turbulence in the surrounding steam. Further, axial evolution of droplet dynamics was analyzed through cross-sectionally averaged quantities, including droplet volume, surface area and Sauter mean diameter (SMD). The downstream SMD values agree well with the existing empirical correlations for the selected range of Wec. The high-resolution data repository from the simulations herein is expected to be of significance to guide model development for system-level thermal hydraulic codes.


2021 ◽  
Vol 7 (1) ◽  
pp. 7-16
Author(s):  
Stepan Lys ◽  

The paper describes the phenomenology of fuel rod behaviour in severe accident. As an example, an experiment is described resulting in severe damage of 19 fuel rod assembly of VVER type; it was carried out in the CORA facility in 1993 (Research Centre, Karlsruhe, Germany). Testing conditions and results of post-test investigations of fuel assembly are given. The fuel rod code RAPTA-SFD is briefly dealt with; the code was a participant in the International Standard Problem ISP-36. The basic results are presented acquired by computer modelling CORA-W2 experiment using RAPTA-SFD code. Among the presented experimentally acquired and calculated results, the scope of the data on stainless steel component behaviour is substantial. The tested CORA-W2 fuel assembly contained a significant quantity of steel components, viz., spacer grids, a guide thimble, and a cladding of an absorber element. It is to be borne in mind that the spacer grids and a guide thimble of the updated and upgraded fuel assembly of VVER-1000 are fabricated from Zr-alloy, hence, the relative quantitative characteristics of chemical interactions between materials and stainless steel (Cr-Ni alloy) will be much lower for the up-to-date upgraded fuel assembly under identical conditions.


Sign in / Sign up

Export Citation Format

Share Document