Optimization of Confined Laminar Natural Convection for Dry Cask Storage Systems

Author(s):  
Corey E. Clifford ◽  
Mark L. Kimber

Although high-density pool storage provides an acceptable method for housing used fuel elements, a number of concerns have triggered a call for the reduction of current inventories by mandating a maximum permissible time in which assemblies may be placed in wet storage before transfer to passive, dry storage conditions. In anticipation of an accelerated fuel transfer program, the principal goal of this investigation is to develop a fundamental understanding of the physics associated with the buoyancy-induced flow around dry casks in an effort to improve the heat rejection capability of the overall system. The aim of this research initiative is to minimize the amount of active pool cooling necessary by maximizing the thermal capacity of dry storage casks. A simplified geometry of a heated horizontal cylinder confined between two, vertical adiabatic walls is employed to evaluate the coupled heat and mass transfer. Two different treatments of the cylinder surface are investigated: constant temperature (isothermal) and constant surface heat flux (isoflux). To quantify the effect of wall distance on the effective heat transfer from the cylinder surface, 18 different confinement ratios are selected in varying increments from 1.125 to 18.0. Each of these geometrical configurations are evaluated at seven distinct Rayleigh numbers ranging from 102 to 105. Maximum values of the surface-averaged Nusselt number are observed at an optimum confinement ratio for each analyzed Rayleigh number. Relative to the pseudo-unconfined cylinder at the largest confinement ratio, a 54.2% improvement in the heat transfer from an isothermal cylinder surface is observed at the optimum wall spacing for the highest analyzed Rayleigh number. An analogous improvement of 46.6% is determined for the same conditions with a constant heat flux surface. Several correlations are proposed to evaluate the optimal confinement ratio and the effective rate of heat transfer at that optimal confinement level for both thermal boundary conditions.

2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Corey E. Clifford ◽  
Mark L. Kimber

Natural convection heat transfer from a horizontal cylinder is of importance in a large number of applications. Although the topic has a rich history for unconfined cylinders, maximizing the free convective cooling through the introduction of sidewalls and creation of a chimney effect is considerably less studied. In this investigation, a numerical model of a heated horizontal cylinder confined between two vertical adiabatic walls is employed to evaluate the natural convective heat transfer. Two different treatments of the cylinder surface are investigated: constant temperature (isothermal) and constant surface heat flux (isoflux). To quantify the effect of wall distance on the effective heat transfer from the cylinder surface, 18 different confinement ratios are selected in varying increments from 1.125 to 18.0. All of these geometrical configurations are evaluated at seven distinct Rayleigh numbers ranging from 102 to 105. Maximum values of the surface-averaged Nusselt number are observed at an optimum confinement ratio for each analyzed Rayleigh number. Relative to the “pseudo-unconfined” cylinder at the largest confinement ratio, a 74.2% improvement in the heat transfer from an isothermal cylinder surface is observed at the optimum wall spacing for the highest analyzed Rayleigh number. An analogous improvement of 60.9% is determined for the same conditions with a constant heat flux surface. Several correlations are proposed to evaluate the optimal confinement ratio and the effective rate of heat transfer at that optimal confinement level for both thermal boundary conditions. One of the main application targets for this work is spent nuclear fuel, which after removal from the reactor core is placed in wet storage and then later transferred to cylindrical dry storage canisters. In light of enhanced safety, many are proposing to decrease the amount of time the fuel spends in wet storage conditions. The current study helps to establish a fundamental understanding of the buoyancy-induced flows around these dry cask storage canisters to address the anticipated needs from an accelerated fuel transfer program.


Author(s):  
A. Gharehghani ◽  
R. Hoseini ◽  
M. M. Salahi

In this study, natural convective heat transfer from cylindrical slender rods with different length and diameters and different angles of inclination (from horizontal to vertical) at constant heat flux condition was measured. For each inclination angle, average natural heat transfer coefficient was obtained. The effects of the angle of inclination and that of the diameter and length of cylinders on heat transfer rates were examined. The angles of 0°, 15°, 30°, 45°, 60°, 75° and 90° were studied. Experimental results show that increasing the diameter of the cylinder, with constant length and the Rayleigh number based on length causes the decrease of the Nusselt number. Increasing the length of the cylinders, with constant diameter and Rayleigh number based on diameter causes the decrease of the Nusselt number. Increasing either the angle of inclination or length decreases the effect of diameter on the heat transfer rate. Experimental results in terms of Nusselt number were correlated as a function of modified Rayleigh number and dimensionless parameters containing diameter, length and orientation angle.


2021 ◽  
Author(s):  
Avik Saha ◽  
Arup Kumar Das

Abstract Pool boiling around a heated cylinder having a diameter larger than the departure diameter of bubbles has been simulated numerically. Thermally uniform heat flux condition has been maintained at the outer surface of the cylinder, submerged at saturated water at atmospheric pressure. Using the Volume of Fluid type framework of liquid phase fraction in the domain, bubble life cycle around the horizontal cylinder has been analyzed to understand different stages of growth, sliding, merging prior to departure. An effort has also been made to characterize the bubble population, emerging from different sites over the cylindrical surface. The influence of cylinder inclination along its axis on these interfacial features has also been discussed using representative numerical simulation. Temperature profiles of the cylinder surface have been portrayed for both horizontal and inclined situations before presenting respective heat transfer coefficients.


Author(s):  
Koichi Araga ◽  
Keisuke Okamoto ◽  
Keiji Murata

This paper presents an experimental investigation of the forced convective boiling of refrigerant HCFC123 in a mini-tube. The inner diameters of the test tubes, D, were 0.51 mm and 0.30 mm. First, two-phase frictional pressure drops were measured under adiabatic conditions and compared with the correlations for conventional tubes. The frictional pressure drop data were lower than the correlation for conventional tubes. However, the data were qualitatively in accord with those for conventional tubes and were correlated in the form φL2−1/Xtt. Next, heat transfer coefficients were measured under the conditions of constant heat flux and compared with those for conventional tubes and for pool boiling. The heat transfer characteristics for mini-tubes were different from those for conventional tubes and quite complicated. The heat transfer coefficients for D = 0.51 mm increased with heat flux but were almost independent of mass flux. Although the heat transfer coefficients were higher than those for a conventional tube with D = 10.3 mm and for pool boiling in the low quality region, they decreased gradually with increasing quality. The heat transfer coefficients for D = 0.30 mm were higher than those for D = 0.51 mm and were almost independent of both mass flux and heat flux.


Sign in / Sign up

Export Citation Format

Share Document