Optimizing Laminar Natural Convection for a Heat Generating Cylinder in a Channel

2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Corey E. Clifford ◽  
Mark L. Kimber

Natural convection heat transfer from a horizontal cylinder is of importance in a large number of applications. Although the topic has a rich history for unconfined cylinders, maximizing the free convective cooling through the introduction of sidewalls and creation of a chimney effect is considerably less studied. In this investigation, a numerical model of a heated horizontal cylinder confined between two vertical adiabatic walls is employed to evaluate the natural convective heat transfer. Two different treatments of the cylinder surface are investigated: constant temperature (isothermal) and constant surface heat flux (isoflux). To quantify the effect of wall distance on the effective heat transfer from the cylinder surface, 18 different confinement ratios are selected in varying increments from 1.125 to 18.0. All of these geometrical configurations are evaluated at seven distinct Rayleigh numbers ranging from 102 to 105. Maximum values of the surface-averaged Nusselt number are observed at an optimum confinement ratio for each analyzed Rayleigh number. Relative to the “pseudo-unconfined” cylinder at the largest confinement ratio, a 74.2% improvement in the heat transfer from an isothermal cylinder surface is observed at the optimum wall spacing for the highest analyzed Rayleigh number. An analogous improvement of 60.9% is determined for the same conditions with a constant heat flux surface. Several correlations are proposed to evaluate the optimal confinement ratio and the effective rate of heat transfer at that optimal confinement level for both thermal boundary conditions. One of the main application targets for this work is spent nuclear fuel, which after removal from the reactor core is placed in wet storage and then later transferred to cylindrical dry storage canisters. In light of enhanced safety, many are proposing to decrease the amount of time the fuel spends in wet storage conditions. The current study helps to establish a fundamental understanding of the buoyancy-induced flows around these dry cask storage canisters to address the anticipated needs from an accelerated fuel transfer program.

Author(s):  
Corey E. Clifford ◽  
Mark L. Kimber

Although high-density pool storage provides an acceptable method for housing used fuel elements, a number of concerns have triggered a call for the reduction of current inventories by mandating a maximum permissible time in which assemblies may be placed in wet storage before transfer to passive, dry storage conditions. In anticipation of an accelerated fuel transfer program, the principal goal of this investigation is to develop a fundamental understanding of the physics associated with the buoyancy-induced flow around dry casks in an effort to improve the heat rejection capability of the overall system. The aim of this research initiative is to minimize the amount of active pool cooling necessary by maximizing the thermal capacity of dry storage casks. A simplified geometry of a heated horizontal cylinder confined between two, vertical adiabatic walls is employed to evaluate the coupled heat and mass transfer. Two different treatments of the cylinder surface are investigated: constant temperature (isothermal) and constant surface heat flux (isoflux). To quantify the effect of wall distance on the effective heat transfer from the cylinder surface, 18 different confinement ratios are selected in varying increments from 1.125 to 18.0. Each of these geometrical configurations are evaluated at seven distinct Rayleigh numbers ranging from 102 to 105. Maximum values of the surface-averaged Nusselt number are observed at an optimum confinement ratio for each analyzed Rayleigh number. Relative to the pseudo-unconfined cylinder at the largest confinement ratio, a 54.2% improvement in the heat transfer from an isothermal cylinder surface is observed at the optimum wall spacing for the highest analyzed Rayleigh number. An analogous improvement of 46.6% is determined for the same conditions with a constant heat flux surface. Several correlations are proposed to evaluate the optimal confinement ratio and the effective rate of heat transfer at that optimal confinement level for both thermal boundary conditions.


2003 ◽  
Vol 125 (2) ◽  
pp. 282-288 ◽  
Author(s):  
Bassam A/K Abu-Hijleh

The problem of laminar natural convection from a horizontal cylinder with multiple equally spaced high conductivity permeable fins on its outer surface was investigated numerically. The effect of several combinations of number of fins and fin height on the average Nusselt number was studied over a wide range of Rayleigh number. Permeable fins provided much higher heat transfer rates compared to the more traditional solid fins for a similar cylinder configuration. The ratio between the permeable to solid Nusselt numbers increased with Rayleigh number, number of fins, and fin height. This ratio was as high as 8.4 at Rayleigh number of 106, non-dimensional fin height of 2.0, and with 11 equally spaced fins. The use of permeable fins is very advantageous when high heat transfer rates are needed such as in today’s high power density electronic components.


2003 ◽  
Author(s):  
Nicola Bianco ◽  
Oronzio Manca ◽  
Sergio Nardini ◽  
Vincenzo Naso

Nowadays trends in natural convection heat transfer are oriented toward either the seeking of new configurations to enhance the heat transfer parameters or the optimization of standard configurations. An experimental investigation on air natural convection in divergent channels with uniform heat flux at both the principal walls is presented in this paper to analyze the effect of radiative heat transfer. Results in terms of wall temperature profiles as a function of the walls diverging angle, the interwall spacing, the heat flux are given for two value of the wall emissivity. Flow visualization is carried out in order to show the peculiar pattern of the flow between the plates in several configurations. Nusselt numbers are then evaluated and correlated to the Rayleigh number. The investigated Rayleigh number ranges from 7.0 × 102 to 4.5 × 108. The maximum wall temperature decreases at increasing divergence angles. This effect is more evident when the minimum channel spacing decrease. A significant decrease in the maximum wall temperature occurs passing from ε = 0.10 to ε = 0.90, except in the inlet region. Flow visualization shows a separation of the fluid flow for bmin = 40 mm and θ = 10°. Correlations between Nusselt and Rayleigh numbers show that data are better correlated when the maximum channel spacing is chosen as the characteristic length.


1986 ◽  
Vol 108 (2) ◽  
pp. 291-298 ◽  
Author(s):  
F. Karim ◽  
B. Farouk ◽  
I. Namer

This paper reports an experimental study of natural convection heat transfer from a horizontal isothermal cylinder between vertical adiabatic walls. Some of the industrial applications of this problem are cooling and casing design of electronic equipment, nuclear reactor safety, and heat extraction from solar thermal storage devices. Heat transfer from 3.81 cm and 2.54 cm diameter cylinders was determined by measuring the electric power supplied to the heater, which was placed inside the cylinders, and correcting for radiation and end losses. Average Nusselt numbers were determined for a Rayleigh number range of 2 × 103 to 3 × 105 and wall spacing to cylinder diameter ratios of 1.5, 2, 3, 4, 6, 8, 10, 12, and ∞. It was found that the confinement of a heated horizontal cylinder by adiabatic walls enhances the heat transfer from the cylinder continuously. This effect is more pronounced at low Rayleigh numbers. A maximum relative enhancement of 45 percent was obtained over the range of experimental conditions studied. Schlieren and flow visualization studies were conducted at selected values of Rayleigh number and wall spacing to cylinder diameter ratios to further explain the heat transfer characteristics and the associated flow physics of the present problem.


1981 ◽  
Vol 103 (4) ◽  
pp. 630-637 ◽  
Author(s):  
E. M. Sparrow ◽  
G. M. Chrysler

Experiments were performed to investigate the natural convection heat transfer characteristics of a short isothermal horizontal cylinder attached to an equi-temperature vertical plate. The apparatus was designed so that the cylinder could be attached to the plate at any one of three positions along the height of the plate. Two cylinders were employed (one at a time) during the course of the experiments, one of which had a length equal to its diameter while the other had a length that was half the diameter. At each attachment position and for each cylinder, the Rayleigh number (based on the cylinder diameter) ranged from 1.4 × 104 to 1.4 × 105. It was found that the interaction of the flat plate boundary layer with the cylinder brought about a reduction of the cylinder Nusselt number relative to that for the classical case of the long isolated horizontal cylinder without end effects. The respective deviations of the Nusselt numbers for the shorter and longer of the participating cylinders from the literature correlation for the isolated cylinder were twenty percent and ten percent. At a given Rayleigh number, the cylinder Nusselt number was quite insensitive to the position of the cylinder along the plate, with the typical data spread due to height being in the 5–7 percent range. The Nusselt number was also rather insensitive to cylinder length, showing a ten percent increase as the length-diameter ratio was increased from one-half to one.


2000 ◽  
Vol 122 (4) ◽  
pp. 679-692 ◽  
Author(s):  
B. A/K Abu-Hijleh

The problem of laminar natural convection heat transfer from a horizontal cylinder with multiple, equally spaced, low conductivity baffles on its outer surface was investigated numerically. The effect of several combinations of number of baffles and baffle height on the average Nusselt number was studied over a wide range of Rayleigh numbers. The computed velocity and temperature fields were also used to calculate the local and global entropy generation for different cylinder diameters. The results showed that there was an optimal combination of a number of baffles and baffle height for minimum Nusselt number for a given value of the Rayleigh number. Short baffles slightly increased the Nusselt number at small values of the Rayleigh number. The global entropy generation increased monotonically with increasing Rayleigh number and decreased with increasing cylinder diameter, baffle height, and number of baffles. [S0022-1481(00)01203-2]


Author(s):  
Qin Lin ◽  
Stephen J. Harrison

Heat transfer in an asymmetrically heated, inclined channel by natural convection and radiation exchange was experimentally investigated. Experiments were conducted on channels with small inclination angle (to horizontal) ranging from 18° to 30° and a wall surface emissivity of 0.29 to 0.95. The channel length/space ratio was between 44 and 220. In each test, a uniform heat flux was applied along the top wall of the channel, while the bottom wall was thermally insulated. Temperature profiles along both the top and bottom walls of the channel were recorded under different heat flux and channel length/space ratios. The dependency of maximum wall temperature and heat transfer on the channel spacing and surface emissivity was explored. As a result of this work, correlations of local and average Nusselt number, with modified channel Rayleigh number, were determined and proposed for channels at inclination angle of around 18° and surface emissivities of around 0.95. The proposed correlation will be valid for modified-Rayleigh number in the range of 10 < Ra” < 5.6 × 104 at asymmetric heat flux boundary conditions.


Author(s):  
R. Hosseini ◽  
M. Alipour ◽  
A. Gholaminejad

This paper describes the experimental results of natural convection heat transfer from vertical, electrically heated cylinder in a concentric/eccentric annulus and develops correlations for the dependence of the average annulus Nusselt number upon the Rayleigh number. Wall surface temperature have been recorded for diameter ratio of d/D = 0.4, with the apparatus immersed in stagnant air with uniform temperature. Measurements have been carried out for eccentric ratios of E = 0, 0.19, 0.34, 0.62 and 0.89 in the range of heat flux of 45 to 430 W/m2. The surface temperature of the heater was found to increase upwards and reach a maximum at some position, beyond which it decreases again. It is observed, that this maximum temperature occurs near h/l = 0.8 for 0 ≤ E ≤ 0.62 at almost all power levels, but shifts downwards for E = 0.89. Moreover, empirical correlations between the average Nusselt number and the Rayleigh number are derived for concentric and eccentric annuli.


1980 ◽  
Vol 102 (4) ◽  
pp. 667-672 ◽  
Author(s):  
L. S. Yao ◽  
F. F. Chen

Two heat transfer modes are involved in the process of melting around a heated horizontal cylinder: conduction and convection. The magnitude of convection is proportional to the Rayleigh number based on the width of the melted region. The importance of natural convection increases with time. For a short period after the beginning of melting, heat transfer is dominated by conduction. A regular perturbation solution is presented to demonstrate the increasing effect of natural convection on the melting process.


Sign in / Sign up

Export Citation Format

Share Document