A Neutronic Evaluation of the HTR-10 Using Scale, MCNPX and MCNP5 Nuclear Codes

Author(s):  
Rômulo V. Sousa ◽  
Clarysson A. M. Silva ◽  
Ângela Fortini ◽  
Cláubia Pereira ◽  
Maria Auxiliadora F. Veloso ◽  
...  

The HTR-10 (High Temperature Gas-cooled Test Reactor) is a 10 MW modular pebble bed type reactor, built by the Institute of Nuclear Energy Technology (INET), Tsinghua University, China. As an advanced reactor, it has good passive safety characteristics: capacity of retaining all fission products inside the coated particles (up to 1,600° C), passive decay heat removal, large heat capacity of the core to mitigate temperature transition, large fuel temperature margin and negative temperature reactivity coefficient sufficient to accommodate reactivity insertion and small amount of excess reactivity in the core. This reactor, which core is filled with 27,000 spherical fuel elements, e.g. TRISO coated particles, is used to test and develop fuel, verify PBR safety features, demonstrate combined electricity production and cogeneration of heat, and provide experience in PBR design, operation and construction. Using the SCALE 6.0 (Standardized Computer Analysis for Licensing Evaluation), the MCNPX 2.6.0 (Monte Carlo N-Particle eXtended) and the MCNP 5 (Monte Carlo N-Particle) nuclear codes, the HTR-10 first critical core described in the Evaluation of The Initial Critical Configuration of The HTR-10 Pebble-Bed Reactor was modeled and analyzed. A three-dimension model was simulated and the keff was obtained and compared with the reference. The result presents good agreement with experimental value. The goal is to validate the DEN/UFMG model to be applied in transmutation studies changing the fuel.

Kerntechnik ◽  
2021 ◽  
Vol 86 (1) ◽  
pp. 45-49
Author(s):  
N. V. Maslov ◽  
E. I. Grishanin ◽  
P. N. Alekseev

Abstract This paper presents results of calculation studies of the viability of coated particles in the conditions of the reactor core on fast neutrons with sodium cooling, justifying the development of the concept of the reactor BN with microspherical fuel. Traditional rod fuel assemblies with pellet MOX fuel in the core of a fast sodium reactor are directly replaced by fuel assemblies with micro-spherical mixed (U,Pu)C-fuel. Due to the fact that the micro-spherical (U, Pu)C fuel has a developed heat removal surface and that the design solution for the fuel assembly with coated particles is horizontal cooling of the microspherical fuel, the core has additional possibilities of increasing inherent (passive) safety and improve the competitiveness of BN type of reactors. It is obvious from obtained results that the microspherical (U, Pu)C fuel is limited with the maximal burn-up depth of ∼11% of heavy atoms in conditions of the sodium-cooled fast reactor core at the conservative approach; it gives the possibility of reaching stated thermal-hydraulic and neutron-physical characteristics. Such a tolerant fuel makes it less likely that fission products will enter the primary circuit in case of accidents with loss of coolant and the introduction of positive reactivity, since the coating of microspherical fuel withstands higher temperatures than the steel shell of traditional rod-type fuel elements.


1992 ◽  
Vol 136 (1-2) ◽  
pp. 143-148 ◽  
Author(s):  
Kurt Kugeler ◽  
Peter-W. Phlippen ◽  
Peter Schmidtlein ◽  
Rudolf Swatoch

Energy ◽  
1991 ◽  
Vol 16 (1-2) ◽  
pp. 521-528 ◽  
Author(s):  
K. Kugeler ◽  
P.-W. Phlippen ◽  
P. Schmidtlein ◽  
R. Swatoch

Author(s):  
Pieter A. Jansen van Rensburg ◽  
Martin G. Sage

This paper presents an uncertainty analysis for a Depressurised Loss of Forced Cooling (DLOFC) event that was performed with the systems CFD (Computational Fluid Dynamics) code Flownex for the PBMR reactor. An uncertainty analysis was performed to determine the variation in maximum fuel, core barrel and reactor pressure vessel (RPV) temperature due to variations in model input parameters. Some of the input parameters that were varied are: thermo-physical properties of helium and the various solid materials, decay heat, neutron and gamma heating, pebble bed pressure loss, pebble bed Nusselt number and pebble bed bypass flows. The Flownex model of the PBMR reactor is a 2-dimensional axi-symmetrical model. It is simplified in terms of geometry and some other input values. However, it is believed that the model adequately indicates the effect of changes in certain input parameters on the fuel temperature and other components during a DLOFC event. Firstly, a sensitivity study was performed where input variables were varied individually according to predefined uncertainty ranges and the results were sorted according to the effect on maximum fuel temperature. In the sensitivity study, only seven variables had a significant effect on the maximum fuel temperature (greater that 5°C). The most significant are power distribution profile, decay heat, reflector properties and effective pebble bed conductivity. Secondly, Monte Carlo analyses were performed in which twenty variables were varied simultaneously within predefined uncertainty ranges. For a one-tailed 95% confidence level, the conservatism that should be added to the best estimate calculation of the maximum fuel temperature for a DLOFC was determined as 53°C. This value will probably increase after some model refinements in the future. Flownex was found to be a valuable tool for uncertainly analyses, facilitating both sensitivity studies and Monte Carlo analyses.


Author(s):  
Minggang Lang ◽  
Yujie Dong

The 10MW High Temperature Gas Cooled Test Reactor (HTR-10) has been built in Institute of Nuclear and New Energy Technology (INET) and has been operating successfully since the beginning of 2003. The core outlet temperature of HTR-10 is 700°C. To verify the technology of gas-turbine direct cycle, at first INET had a plan to increase its core outlet temperature to 750°C and use a helium gas turbine instead of the steam generator (then the reactor is called HTR-10GT). Though HTR-10 has good intrinsic safety, the design basic accidents and beyond design basis accidents of HTR-10GT must be analyzed according to China’s nuclear regulations due to changed operation parameters. THERMIX code system is used to study the ATWS accident of one control rod withdrawal out of the core by a mistake. After a control rod in the side reflector was withdrawn out at a speed of 1 cm/s by a mistake, a positive reactivity was inserted and the reactor power increased and the temperature of the core increased. When the neutron flux of power measuring range exceeded 123% and the core outlet temperature was greater than 800°C, the reactor should scram. It was supposed that all the control rods in the reflectors had been blocked and the reactor could not scram. Thus the accident went on and the core temperature and the system pressure increased but the reactor shutdown at last because of its natural negative temperature reactivity feedback mechanism. The residual heat would be removed out of the core by the cavity cooling system. During the accident sequence the maximum fuel temperature was 1242.4°C. It was a little higher than 1230°C–the fuel temperature limitation of HTR-10. Now the sphere fuel used in HTR-10GT will also be used in HTR-PM and the temperature limitation raised to 1620°C, so the HTR-10GT is safe during the ATWS of one control rod withdrawal out of the core. The paper also compares the analysis result of HTR10-GT to those of HTR-10. The results shows that the HTR-10GT is still safe during the accident though its operating temperature is higher than HTR-10. The analysis will be helpful to HTR-PM because they have the same outlet temperature of the core.


Author(s):  
B. Boer ◽  
J. L. Kloosterman ◽  
D. Lathouwers ◽  
T. H. J. J. van der Hagen ◽  
H. van Dam

By altering the coolant flow direction in a pebble bed reactor from axial to radial, the pressure drop can be reduced tremendously. In this case the coolant flows from the outer reflector through the pebble bed and finally to flow paths in the inner reflector. As a consequence, the fuel temperatures are elevated due to the reduced heat transfer of the coolant. However, the power profile and pebble size in a radially cooled pebble bed reactor can be optimized to achieve lower fuel temperatures than current axially cooled designs, while the low pressure drop can be maintained. The radial power profile in the core can be altered by adopting multi-pass fuel management using several radial fuel zones in the core. The optimal power profile yielding a flat temperature profile is derived analytically and is approximated by radial fuel zoning. In this case, the pebbles pass through the outer region of the core first and each consecutive pass is located in a fuel zone closer to the inner reflector. Thereby, the resulting radial distribution of the fissile material in the core is influenced and the temperature profile is close to optimal. The fuel temperature in the pebbles can be further reduced by reducing the standard pebble diameter from 6 cm to a value as low as 1 cm. An analytical investigation is used to demonstrate the effects on the fuel temperature and pressure drop for both radial and axial cooling. Finally, two-dimensional numerical calculations were performed, using codes for neutronics, thermal-hydraulics and fuel depletion analysis, in order to validate the results for the optimized design that were obtained from the analytical investigations. It was found that for a radially cooled design with an optimized power profile and reduced pebble diameter (below 3.5 cm) both a reduction in the pressure drop (Δp = −2.6 bar), which increases the reactor efficiency with several percent, and a reduction in the maximum fuel temperature (ΔT = −50 °C) can be achieved compared to present axially cooled designs.


Author(s):  
Minggang Lang

The 10MW High Temperature Gas Cooled Test Reactor (HTR-10) has been built in Institute of Nuclear and New Energy Technology (INET) and has been operating successfully since the beginning of 2003. The core outlet temperature of HTR-10 is 700°C. To verify the technology of gas-turbine direct cycle, at first INET had a plan to increase its core outlet temperature to 750°C and to use a helium gas turbine instead of the steam generator (then the reactor is called HTR-10GT). Though HTR-10 has good intrinsic safety, the design basis accidents and beyond design basis accidents of HTR10-GT must be analyzed according to China’s nuclear regulations due to changed operation parameters. THERMIX code system is used to study the ATWS accident of one control rod withdrawal out of the core by a mistake under the loss of the system pressure. After a control rod in the side reflector was withdrawn out at a speed of 1 cm/s by a mistake, a positive reactivity was inserted. At the same time, the system pressure was supposed to lose by some reason. Thus the reactor power increased and the temperature of the core increased. And the protection system warns with two scram signal: too high of the negative varying rate of the system pressure and too high of the reactor power, which should induce the reactor to scram. It was supposed that all the control rods in the reflectors had been blocked and the reactor could not scram. Thus the accident went on and the core temperature and the system pressure continued to increase but the reactor shutdown at last because of its natural negative temperature reactivity feedback mechanism. The residual heat would be removed out of the core by the cavity cooling system. During the accident sequence the maximum fuel temperature was 1203.4°C. It was a little bit lower than 1230°C — the fuel temperature limitation of HTR-10 and there is no release of any radioactivity. So the HTR-10GT is safe during the ATWS of one control rod withdrawal out of the core. The paper also compares the analysis result of HTR10-GT to those of HTR-10. The results shows that the HTR-10GT is still safe during the accident though its operating temperature is higher than HTR-10.


Author(s):  
Yanhua Zheng ◽  
Lei Shi ◽  
Fubing Chen

One of the most important properties of the modular high temperature gas-cooled reactor is that the decay heat in the core can be carried out solely by means of passive physical mechanism after shutdown due to accidents. The maximum fuel temperature is guaranteed not to exceed the design limitation, so as to the integrity of the fuel particles and the ability of retaining fission product will keep well. Nonetheless, the auxiliary active core cooling should be design to help removing the decay heat and keeping the reactor in an appropriate condition effectively and quickly in case of reactor scram due to any transient and the main helium blower or steam generator unusable. Based on the preliminary design of the 250 MW pebble-bed modular high temperature gas-cooled reactor, assuming that the core cooling will be started up 1 hour after the scram, different core cooling schemes are studied in this paper. After the reactor shutdown, a certain degree of natural convection will come into being in the core due to the non-uniform temperature distribution, which will accordingly change the core temperature distribution and in turn influence the outlet hot helium temperature. Different cooling flow rates are also analyzed, and the important parameters, such as the fuel temperature, outlet hot helium temperature and the pressure vessel temperature, are studied in detail. A feasible core cooling scheme, as well as the reasonable design parameters could be determined based on the analysis. It is suggested that, considering the temperature limitation of the structure material, the coolant flow direction should be same as that of the normal operation, and the flow rate could not be too large.


Author(s):  
Jong-Rong Wang ◽  
Hao-Tzu Lin ◽  
Hsiung-Chih Chen ◽  
Wei-Chen Wang ◽  
Chunkuan Shih

The Lungmen NPP is the first ABWR (Advanced Boiling Water Reactor) nuclear power plant in Taiwan, consisting of two identical units with 3,926 MWt rated thermal power each and 52.2×106 kg/h rated core flow. The core of Lungmen NPP has 872 bundles of GE14 fuel. There are 10 reactor internal pumps (RIP) in the reactor vessel, providing 111% rated core flow at the nominal operating speed of 151.84 rad/sec. A station blackout (SBO) is defined as the loss of offsite electrical power concurrent with turbine trip and unavailability of the onsite emergency AC power. These result in the loss of core cooling and heat removal systems that rely on the above AC power for their operation. In this research, the TRACE SBO model of Lungmen ABWR has been developed in order for the analysis of SBO transient. The initial condition of SBO transient is 100% rated power/100% rated core flow. The TRACE’s results show that the reactor fuel temperature has been reached 1088.71 K (the zirconium-water reaction may generate) at about 3200 sec. It indicates that the fuels might be damaged after 3200 sec if the RCIC and ACIWA failed to activate in this transient.


Author(s):  
Masanori Naitoh ◽  
Marco Pellegrini ◽  
Hiroaki Suzuki ◽  
Hideo Mizouchi ◽  
Hidetoshi Okada

This paper describes analysis results of the early phase accident progression of the Fukushima Daiichi Nuclear Power Plant (NPP) Unit 1 by the severe accident analysis code SAMPSON. The isolation condensers were the only devices for decay heat removal at Unit 1, but they stopped after the loss of AC and DC powers. Since there were no decay heat removal for about 14 hours after their termination until the start of alternative water injection into the core by the fire engine, the core melt and the reactor pressure vessel (RPV) bottom failure occurred resulting in large amount of fission products release into the environment. The original SAMPSON was improved by adding new modellings for the phenomena which have been deemed specific to the Fukushima Daiichi NPP: (1) deterioration of SRV gaskets and (2) buckling of in-core-monitor housings which caused the early steam leakage from the core into the drywell, and (3) melt of the in-core-monitor housings in the lower plenum of the RPV. The analysis results showed that (1) 55.3% of UO2 of the initial loading and 66.1% of the core material including UO2, zircaloy, steel and control materials had melted down into the pedestal of the drywell, (2) the amount of Hydrogen generated by Zr-H2O reaction was 686 kg, (3) amount of Cs element released from fuels was 61 kg which was 72% of the total Cs element which was included in fuels at the initiation of the accident, and (4) 18.3% of the corium which fell into the pedestal was one large lump and the 81.7% was particulate corium.


Sign in / Sign up

Export Citation Format

Share Document