Fragility of a Flood Defense Structure Subjected to Multi-Hazard Scenario

Author(s):  
Saran Srikanth Bodda ◽  
Harleen Kaur Sandhu ◽  
Abhinav Gupta

The March 2011 Fukushima Daiichi nuclear power plant disaster has highlighted the significance of maintaining the integrity of flood protection systems in the vicinity of a nuclear power plant. In the US, Oyster Creek nuclear plant was shut down when high storm surge during hurricane Sandy threatened its water intake and circulation systems. A gravity dam located upstream of a power plant can undergo seismic failure or flooding failure leading to flooding at the nuclear plant. In this paper, we present the results from a study on evaluating the fragilities for failure of a concrete gravity dam under both the flooding and the seismic events. Finite element analysis is used for modeling the seismic behavior as well as the seepage through foundation. A time-dependent analysis is considered to account for appropriate nonlinearities. Failure of dam foundation is characterized by rupture, and the failure of dam body is characterized by excessive deformation for the flooding and seismic loads respectively. The study presented in this paper has focused on a concrete gravity dam because of the need of validation of models which exist in prior studies only for concrete gravity dams. However, the concepts are directly applicable to any concrete flood defense structure.

Author(s):  
Claude Besson ◽  
Erico Mariotti ◽  
Alexandre Mouysset ◽  
Lorenz zur Nedden ◽  
Bernard Delannay

Diamond tools are well proven cutting, drilling and grinding technologies in many applications but need to be specifically optimized and adapted for the complex and varied structures of nuclear power plant in view of decontamination and decommissioning. The proper development and use of diamond tools in these extreme and complex conditions can only be achieved thanks to the combined talent of experienced nuclear plant contractors, engineers, technicians, operators of diamond tools, and the use of specialized equipment. This present paper is an overview of the possible applications of diamond tools in the different operations of Nuclear Decommissioning and Decontamination.


Author(s):  
Taihei Yotsuya ◽  
Kouichi Murayama ◽  
Jun Miura ◽  
Akira Nakajima ◽  
Junichi Kawahata

A composite module construction method is to be examined reflecting one of the elements of construction rationalization of a future nuclear plant planned by Hitachi. This concept is based on accomplishments and many successes achieved by Hitachi through application of the modular construction method to nuclear power plant construction over 20 years. The feature of the composite module typically includes a planned civil structure, such as a wall, a floor, and a post, representing modular components. In this way, an increased level of rationalization is expected in the conventional large-scale nuclear plants. Furthermore, the concept aiming at the modularization of all the building parts comprising medium- or small-scale reactors is also to be examined. Additional aims include improved reductions in the construction duration and rationalization through use of the composite module. On the other hand, present circumstances in nuclear plant construction are very pressing because of economic pressures. With this in mind, Hitachi is pursuing additional research into the introduction of drastic construction rationalization, such as the composite module. This concept is one of the keys to successful future plant construction, faced with such a severe situation.


2013 ◽  
Vol 479-480 ◽  
pp. 1045-1050
Author(s):  
Wei Ting Lin ◽  
Yuan Chieh Wu ◽  
Chin Cheng Huang

This study is aim to evaluate the seismic response of the motor control center cabinet in a nuclear power plant using shaking table test and 3D finite element analysis method. Three typical types of motor control center cabinet were used in this study and frequency curves and spectral response acceleration were used as the indices of the dynamic response. The results indicated that the resonance frequency for X and Y direction is about 12 Hz and 15 Hz, respectively, which is verified by the numerical results. The frequencies curves and spectral response acceleration generated by numerical and experimental method were similar and well fitting. Although the numerical method obtained the conservative results, the model accurately represents the dynamic characteristics of the actual motor control center cabinet for seismic verification.


Subject The Akkuyu nuclear plant that Turkey is building with Russia's Rosatom. Significance Since the Turkish air force downed a Russian warplane last November, bilateral relations have plunged to an all-time low. Rumours persist that Moscow has frozen funding for the Akkuyu nuclear power plant (NPP) and is unwilling to complete the project unless it can share the risk. Impacts Continued development would be an added incentive for Ankara and Moscow to repair relations. Abandoning the project would further strain relations between Ankara and Moscow. Turkey may look for other developers to complete the NPP while prioritising other forms of power generation.


1993 ◽  
Vol 115 (4) ◽  
pp. 721-727 ◽  
Author(s):  
M. J. Graddage ◽  
F. J. Czysz ◽  
A. Killinger

Two crankcase explosions occurred within one month in diesel engines that drive large emergency generator sets at a nuclear power plant in Eastern Pennsylvania. As a result, the electric utility conducted an extensive investigation to determine the root cause(s) of the problem. Initial inspections confirmed that the crankcase explosions were the result of pistons and liners becoming overheated. The technical challenge was to establish why the pistons and liners were overheating when other engines of the same type did not appear to have the problem in the same duty. Analytical models of piston motion, engine start, and run thermodynamics, and a finite element analysis of piston distortion during engine start and load transients were developed. Preliminary work with these models predicted a feature of the piston design that could adversely affect lubrication conditions during a rapid start and load transient. Final input data to refine the models were needed and these were obtained from tests carried out on a similar diesel generator operated by a municipality in Iowa. This paper describes the successful accomplishment of the field tests using state-of-the-art instrumentation and recording equipment. It also shows how the modeling and test work identified wear at certain locations on the piston skirt as the origin of distress leading to the crankcase explosions. Unfavorable engine starting and loading conditions as well as less than desirable piston skirt-to-liner lubrication conditions in the engines at the nuclear power plant have been identified as the root causes and corrective action has been initiated.


Kudankulam ◽  
2020 ◽  
pp. 32-70
Author(s):  
Raminder Kaur

Chapter 2 grounds the study in an exploration of the ecological, material, and social contours of the region. It focuses on the backstories of Kudankulam as the site for a nuclear plant and the spaces of criticality that were generated. The formidable presence of the nuclear plant, visual, material and discursive spawned a range of reactions that spanned from intrigue to ambivalence to resistance. With an overview of ‘hot spots’ in Kanyakumari and Tirunelveli Districts, the prospect of more radioactivity applies not just to the Kudankulam Nuclear Power Plant but also to high levels of background radiation in peninsular India, and the mining of sand for atomic minerals particularly for alternative sources of nuclear fuel by way of thorium. Along the way, we assess the repercussions of new hierarchies with the migrant middle class of nuclear employees and the entrenchment of old ones along caste-communal lines.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2819 ◽  
Author(s):  
Yonghee Lee ◽  
Younho Cho

The containment liner plate (CLP) in a nuclear power plant is the most critical part of the structure of a power plant, as it prevents the radioactive contamination of the surrounding area. This paper presents feasibility of structural health monitoring (SHM) and an elastic wave tomography method based on ultrasonic guided waves (GW), for evaluating the integrity of CLP. It aims to check the integrity for a dynamic response to a damaged isotropic structure. The proposed SHM technique relies on sensors and, therefore, it can be placed on the structure permanently and can monitor either passively or actively. For applying this method, a suitable guided wave mode tuning is required to verify wave propagation. A finite element analysis (FEA) is performed to figure out the suitable GW mode for a CLP by considering geometric and material condition. Furthermore, elastic wave tomography technique is modified to evaluate the CLP condition and its visualization. A modified reconstruction algorithm for the probabilistic inspection of damage tomography algorithm is used to quantify corrosion defects in the CLP. The location and shape of the wall-thinning defects are successfully obtained by using elastic GW based SHM. Making full use of verified GW mode to Omni-directional transducer, it can be expected to improve utilization of the SHM based evaluation technique for CLP.


Sign in / Sign up

Export Citation Format

Share Document