Experimental Studies on the Thermal-Hydraulics of Dowtherm A Through the Pebble Bed With Internal Heat Generation

Author(s):  
Limin Liu ◽  
Dalin Zhang ◽  
Linfeng Li ◽  
Yichen Yang ◽  
Chenglong Wang ◽  
...  

The Fluoride-salt-cooled High temperature Reactors (FHRs) are an advanced concept using a novel combination of high-temperature coated-particle fuel, low-pressure fluoride-salt coolant and air-Brayton power conversion system. Prismatic fuel or pebble fuel are adopted for the conceptual core designs of FHRs like TMSR-SF, MK1 PB-FHR and SM-AHTR. The high-Prandtl-number FLiBe is mainly adopted as the primary coolant, which specifies in high melting and boiling point and high volumetric capacity. The experimental results obtained from the air, water or inert gas prove reliable for the Prandtl number vary from 0.7 to 7. Little experimental research has been conducted to prove applicability of the above results to the high-Prandtl fluid, fluoride salts in the packed pebble bed. In this paper, a pebble bed experimental facility has been designed and constructed for the FHRs to explore the thermal-hydraulic characteristics of fluoride salts in the reactor pebble bed core. Dowtherm A is adopted as a simulant fluid for the fluoride salts. The cylindrical test section is packed with steel pebbles. The electromagnetic induction heating system is used to provide internal heat source for the pebble beds. The forced flow and convective heat transfer of high-Prandtl-number fluid in the pebble bed with internal heat generation are investigated in the experiment. The fluid inlet temperature and mass flow rate are studied on the thermal-hydraulic characteristics.

2003 ◽  
Vol 81 (4) ◽  
pp. 699-703 ◽  
Author(s):  
E MA Elbashbeshy ◽  
M AA Bazid

Heat transfer over a stretching surface with internal heat generation or absorption is examined. The surface is moving with a power-law velocity distribution. The effect of various governing parameters, such as the Prandtl number, the velocity exponent, and the heat-source/sink parameter on the velocity profiles, temperature profiles, and rate of heat transfer are analyzed. PACS No.: 44.20.tb


Author(s):  
Farid Berrahil ◽  
Smail Benissaad ◽  
Abid Chérifa ◽  
Marc Médale

Abstract This work presents a numerical study of natural convection in a laterally heated cavity filled with an electrically conductive fluid ([Formula: see text]) in the presence of an external magnetic field and an internal heat source. The finite volume method with the SIMPLER algorithm is used to solve the system of equations governing the magnetohydrodynamics flow. The influence of volumetric heating SQ on the flow structure and on the heat transfer within the cavity for Gr = 104, 105, and 106 was examined. The effects of aspect ratio ( A = 1, 0.5, and 2), Prandtl number (low Prandtl number fluids), and magnetic field ([Formula: see text] to [Formula: see text]) were determined in the steady state with internal heat generation. Two orientations of the magnetic field were considered in order to have better control of the flow. The strongest stabilization of the flow field with internal heat generation is found when the magnetic field is oriented horizontally.


Sign in / Sign up

Export Citation Format

Share Document