chaotic convection
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Sèmako Justin Dèdèwanou ◽  
Amoussou Laurent Hinvi ◽  
Hodévèwan Clément Miwadinou ◽  
Adjimon Vincent Monwanou ◽  
Jean Bio Chabi Orou

2021 ◽  
pp. 2150049
Author(s):  
SIYUE XIONG ◽  
XUEYE CHEN

In this paper, we mainly study the mixing performance of the micromixer with quartic Koch curve fractal (MQKCF) by numerical simulation. Changing the structure of the microchannel based on the fractal principle can significantly improve the fluid flow state in the microchannel and improve the mixing efficiency of the micromixer. This paper discussed the effects of different fractal deflection angles, microchannel heights and different fractal times on the mixing efficiency under four different Reynolds numbers (Re). It is found that changing the deflection angle of the fractal can bring extremely high benefits, which makes the fluid deflect and fold in the microchannel, enhancing the chaotic convection in the microchannel, and improve the mixing efficiency of the fluid. Under the reasonable arrangement of the quartic Koch curve fractal principle, it can give the micro-mixture more than 99% mixing efficiency. Based on the excellent mixing performance of MQKCF, it also has extremely high application value in the biochemical neighborhood.


2021 ◽  
Vol 33 (4) ◽  
pp. 044107
Author(s):  
P. G. Siddheshwar ◽  
C. Kanchana ◽  
D. Laroze

Author(s):  
Siyue Xiong ◽  
Xueye Chen

Abstract In this paper, We arrange the obstacles based on the Koch fractal principle (OKF) in the micromixer. By changing the fluid flow and folding the fluid, a better mixing performance is achieved. We improve the mixing efficiency by placing OKF and changing the position of OKF, then we studied the influence of the number of OKF and the height of the micromixer on the mixing performance. The results show that when eight OKF are staggered in the microchannel and the height is 0.2 mm, the mixing efficiency of the OKF micromixer can reach 97.1%. Finally, we compared the velocity cross section and velocity streamline of the fluid, and analyzed the influence of OKF on the concentration trend. Through analysis, it is concluded that OKF can generate chaotic convection in the fluid, and enhance the mixing of fluids by generating vortices and folding the fluid. It can effectively improve the mixing efficiency of the micromixer.


2021 ◽  
pp. 2150037
Author(s):  
SIYUE XIONG ◽  
XUEYE CHEN

In this paper, we have studied the effect of variable-angle grooves and baffles on the mixing efficiency of the micromixer. In order to explore the influence on the micromixer with different types of grooves and baffles, we designed grooves and baffles with different geometric parameters and placed them in T-channels to interfere with fluid flow. We studied VAM30∘ (variable-angle grooves and baffles micromixer with an angle of 30∘) directions and distributions as well as their different groove depths and baffle heights affect the mixing performance. We tried to divide the grooves and baffles into five groups, and discussed the effects of staggered depth and height on mixing efficiency. The mixing efficiencies of micromixer in the Re (Reynolds number) range of 0.1–100 were calculated, and the fluid flow in the microchannel was analyzed. The simulation results show that VAM30∘ is more favorable for solution mixing. The mixing efficiency of the micromixer could reach 98.9% with the change of different geometric parameters. This is because when the structure changes, the flow state of the fluid is improved, which is conducive to lengthening the residence time of the fluid in the channel. With the increase of Re, it is also conducive to enhancing the chaotic convection and improving the mixing efficiency.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2386
Author(s):  
Guannan Wang ◽  
Zhen Zhang ◽  
Ruijin Wang ◽  
Zefei Zhu

Nanofluids are considered to be a next-generation heat transfer medium due to their excellent thermal performance. To investigate the effect of electric fields and magnetic fields on heat transfer of nanofluids, this paper analyzes the mechanism of thermal conductivity enhancement of nanofluids, the chaotic convection and the heat transfer enhancement of nanofluids in the presence of an applied electric field or magnetic field through the method of literature review. The studies we searched showed that applied electric field and magnetic field can significantly affect the heat transfer performance of nanofluids, although there are still many different opinions about the effect and mechanism of heat transfer. In a word, this review is supposed to be useful for the researchers who want to understand the research state of heat transfer of nanofluids.


CFD letters ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 62-74
Author(s):  
Nor Halawati Senin ◽  
Nor Fadzillah Mohd Mokhtar ◽  
Mohamad Hasan Abdul Sathar

The nonlinear stability analysis of a ferrofluid layer system is formulated mathematically. This system considered the upper and lower free isothermal boundary with the system heated from below. A mathematical formulation is produced to study the behaviour of the chaotic convection in a ferrofluid layer system using Galerkin truncated expansion. The Boussinesq approximation is opted with the existence of internal heating and the magnetic number. It is found that the transition to chaos in this present study is identical to the Lorenz attractor and thus validate the method and analysis of this study. The impact of elevating the internal heat generation is found to hasten the instability of the system and as for the magnetic number, at M1 = 2.5 the homoclinic bifurcation occurs and thus accelerates the convection process.


2020 ◽  
Vol 48 (11) ◽  
pp. 3840-3846
Author(s):  
John P. Koulakis ◽  
Seth Pree ◽  
Seth Putterman

Sign in / Sign up

Export Citation Format

Share Document