Epistemic Uncertainty Quantification of Floor Responses for a Nuclear Reactor Building

Author(s):  
Byunghyun Choi ◽  
Akemi Nishida ◽  
Yinsheng Li ◽  
Ken Muramatsu ◽  
Tsuyoshi Takada

After the 2011 Fukushima accident, engineers of nuclear power plants are looking beyond the basic design requirements and ensuring that countermeasures are built in to avert possible nuclear accidents. In seismic probabilistic risk assessment (SPRA), uncertainties can be classified in two ways as aleatory uncertainties or epistemic uncertainties. To improve the reliability of SPRA, the difference in seismic response due to difference of building modelings related to epistemic uncertainty was focused on. Two modeling methods were used for a seismic response analysis: a three-dimensional finite-element model and a conventional sway-rocking stick model. Simulated input ground motions related to aleatory uncertainty were generated for the input waves. Then, the seismic floor response results of the various input ground motions of the two modeling methods were quantified. For the uncertainty quantification related to the different building modelings, a statistical analysis of the floor response results of the nuclear reactor building were further performed. Finally, for the quantification of the uncertainty in the fragility analysis for SPRA, the way to use of these results were discussed.

Author(s):  
Byunghyun Choi ◽  
Akemi Nishida ◽  
Ken Muramatsu ◽  
Tatsuya Itoi ◽  
Tsuyoshi Takada

Abstract After the 2011 Fukushima accident, the seismic regulations for nuclear power plants (NPP) in Japan have been strengthened to include countermeasures far beyond design-basis accidents. The importance of seismic probabilistic risk assessments, therefore, have been the focus of deserved attention. Generally, an uncertainty quantification has been a very important undertaking to assess for fragility in NPP buildings. Therefore, this study focuses on the reduction in epistemic uncertainty by aiming to clarify the seismic-response effects on NPP buildings based on different modeling methods. As a first step in this study, the authors compared the seismic-response effects using two modeling methods of analysis. To evaluate the seismic response, an analysis was performed on two building model types; these being the three-dimensional (3D) finite-element model and the sway-rocking model with a conventional lumped mass system. To input a ground motion, the authors adopted 200 types of simulated seismic ground motions, generated by fault-rupture models, using stochastic seismic source characteristics. For the uncertainty quantification, we conducted a statistical analysis of the seismic responses acquired from the two modeling methods based on the building response each ground-motion input, and quantitatively evaluated the uncertainty response by considering the different modeling methods. We found a clear difference in the modeling methods near the floor and wall openings. We also imparted our knowledge on these 3D effects for the seismic-response analysis.


2021 ◽  
Author(s):  
Choi Byunghyun ◽  
Akemi Nishida ◽  
Ken Muramatsu ◽  
Tatsuya Itoi ◽  
Tsuyoshi Takada

2020 ◽  
Author(s):  
Evrim Oyguc ◽  
Abdul Hayır ◽  
Resat Oyguc

Increasing energy demand urge the developing countries to consider different types of energy sources. Owing the fact that the energy production capacity of renewable energy sources is lower than a nuclear power plant, developed countries like US, France, Japan, Russia and China lead to construct nuclear power plants. These countries compensate 80% of their energy need from nuclear power plants. Further, they periodically conduct tests in order to assess the safety of the existing nuclear power plants by applying impact type loads to the structures. In this study, a sample third-generation nuclear reactor building has been selected to assess its seismic behavior and to observe the crack propagations of the prestressed outer containment. First, a 3D model has been set up using ABAQUS finite element program. Afterwards, modal analysis is conducted to determine the mode shapes. Nonlinear dynamic time history analyses are then followed using an artificial strong ground motion which is compatible with the mean design spectrum of the previously selected ground motions that are scaled to Eurocode 8 Soil type B design spectrum. Results of the conducted nonlinear dynamic analyses are considered in terms of stress distributions and crack propagations.


2011 ◽  
Vol 243-249 ◽  
pp. 4052-4055
Author(s):  
Li Dong Zhao ◽  
Bo Song

In earthquake engineering, researchers have found that many structures were not damaged after strong ground motions because of the rocking effect. In order to reveal the potential application value of the uplift effect on seismic isolation, it will be using numerical simulation software OpenSees to research the seismic response of pier considering uplift. Building the pier’s finite element model and considering the plasticity and nonlinear of the pier and soil spring, the ground motion from El Centro and TCU101 are taken as the input respectively. Through analyzing the result, it is shown that at the base of the pier the maximum bending moment is reduced by 36.93% and 46.70%, and the maximum curvature is also reduced by 78.42% and 87.12% respectively. Meanwhile, the maximum horizontal acceleration at the top of the pier is decreased 12.60% and 16.90%. The uplift effect significantly reduces the plastic deformation and plays a base-isolated role according to the results. It has also found that the earthquakes with velocity pulse effect are dangerous to the structures.


2013 ◽  
Vol 05 (01) ◽  
pp. 1350006 ◽  
Author(s):  
C. JACOB ◽  
K. SEPAHVAND ◽  
V. A. MATSAGAR ◽  
S. MARBURG

The stochastic response of base-isolated building considering the uncertainty in the characteristics of the earthquakes is investigated. For this purpose, a probabilistic ground motion model, for generating artificial earthquakes is developed. The model is based upon a stochastic ground motion model which has separable amplitude and spectral non-stationarities. An extensive database of recorded earthquake ground motions is created. The set of parameters required by the stochastic ground motion model to depict a particular ground motion is evaluated for all the ground motions in the database. Probability distributions are created for all the parameters. Using Monte Carlo (MC) simulations, the set of parameters required by the stochastic ground motion model to simulate ground motions is obtained from the distributions and ground motions. Further, the bilinear model of the isolator described by its characteristic strength, post-yield stiffness and yield displacement is used, and the stochastic response is determined by using an ensemble of generated earthquakes. A parametric study is conducted for the various characteristics of the isolator. This study presents an approach for stochastic seismic response analysis of base-isolated building considering the uncertainty involved in the earthquake ground motion.


Sign in / Sign up

Export Citation Format

Share Document