Demonstrative HEAF (High Energy Arcing Fault) Fire Tests of High and Low Voltage Switchgears of Nuclear Power Plants

Author(s):  
Koji Shirai ◽  
Tsukasa Miyagi ◽  
Mikimasa Iwata ◽  
Koji Tasaka ◽  
Junghoon Ji

High Energy Arcing Faults (HEAF) have the potential to cause extensive damage to the failed electrical components and distribution systems along with adjacent equipment and cables within the zone of influence (ZOI). Furthermore, the significant energy released during HEAF event can act as an ignition source to other components within the area of the HEAF. In Japan, during the Great East Japan Earthquake occurred in 2011, the seismic induced HEAF fire event, which induced the whole damage of the multiple high voltage switchgears, was observed in Onagawa Nuclear Power Plant (NPP). In response, in August 2017, the NRA (Nuclear Regular Authority) in Japan amended the safety requirement for the power supply to consider the influence of the successive fire due to the HEAF event (hereinafter HEAF fire event). Therefore, it is urgently necessary to establish the design criteria to prevent the HEAF fire event, and enhance the experiment data of the HEAF fire event. In order to estimate the total arc energy during the HEAF event and obtain the threshold value to prevent the HEAF fire for the existed non-arc proof electrical cabinets, several series of three-phase internal arc tests with high (6.9kV class) and low (480V class) voltage electrical cabinets were executed. We executed internal arc tests with full scale high/low voltage metal-enclosed switchgear components (non-arc proof type, copper bus conductor), and evaluated arc energy, the mechanical damage of the cabinet and the surrounding equipment due to the impulsive pressure and the possibility of successive fire occurrence. In case of high voltage switchgear, when the arcing energy exceeded 25.3MJ, successive fire was identified. Especially, in the case where the arc flash was discharged in the circuit breaker room, a 2-second arcing duration in a three-phase short-circuit current with 18.9kA (measured arcing energy over 40MJ) caused successive fire which required extinguishment. On the other hand, in case of low voltage power center, when the arcing energy exceeded 19MJ, successive fire was identified. According to these demonstrative tests, this paper presents the evaluation method to estimate total arc discharge energy during the HEAF event for high and low voltage electrical cabinets.

2020 ◽  
Vol 11 ◽  
pp. 11-17
Author(s):  
Gabriel Nicolae Popa ◽  
Corina Maria Diniș

Low-voltage three-phase induction motors are most often used in industrial electric drives. Electric motors must be protected by electric and/or electronic devices against: short-circuit, overloads, asymmetrical currents, two-phase voltage operation, under-voltage, and over-temperature. To design the electronic protection currents, voltages and temperature must be measured to determine whether they fall within normal limits. The electronic protection was design into low capacity PLC. The paper presents the designs and analysis of complex electronic protection for general purpose low-voltage three-phase induction motors. The electronic protection has Hall transducers and conversion electronic devices for AC currents to DC voltages, AC voltages to DC voltage, temperature to DC voltage, a low capacity PLC, switches, motor’s power contactors, and signalling lamps has been developed. Experiments with complex electronic protection, for different faults are presented. The proposed protection has the advantages of incorporating all usual protections future for the low-voltage three-phase induction motors.


Author(s):  
Esko Pekkarinen

Modernisation of control rooms of the nuclear power plants has been a major issue during the last few years. With this as a basis, the BWR plants in Sweden and Finland funded, in co-operation with the Halden Project, an experimental HAMBO BWR simulator project based on the Forsmark 3 plant in Sweden. VTT Energy in Finland developed the simulator models for HAMBO with the aid of their APROS tool, while the operator interface was developed by the Halden Project. The simulator and its performance have been described in other publications [1, 2]. On July 25th 2006 there was a short circuit at Forsmark 1 nuclear power plant when manoeuvring equipment in the 400kV-switch yard. Due to the short circuit, the plant suffered an electrical disturbance that led to scram and failure of two out of four diesel generators. The purpose of the study carried out at VTT in 2007 was to assess the capabilities of the HAMBO BWR simulator to handle Forsmark 1 type of events in different nuclear power plants (Forsmark 3 in this case). The Forsmark 1 incident showed (among other things) that the intention to protect certain components (in this case the UPS-system) can in certain situations affect negatively to the safety functions. It is concluded that most of this type of BWR transients may be simulated to a certain extent using the existing HAMBO- and APROS- models. A detailed modelling of the automation and electric systems is required sometimes if the complex interplay between these systems and the process is to be predicted reliably. The modelling should be plant specific and level of detail should be assessed case-by-case (i.e. what kind of transient is in question, what systems are available, what is the main purpose of the analyses etc.). The thermal-hydraulic models of the APROS-code seem to replicate well the real behaviour of thermal-hydraulic process provided that there is enough information about the transient in consideration.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3054 ◽  
Author(s):  
Yanling Lv ◽  
Yuting Gao ◽  
Jian Zhang ◽  
Chenmin Deng ◽  
Shiqiang Hou

As a new type of generator, an asynchronized high-voltage generator has the characteristics of an asynchronous generator and high voltage generator. The effect of the loss of an excitation fault for an asynchronized high-voltage generator and its fault diagnosis technique are still in the research stage. Firstly, a finite element model of the asynchronized high-voltage generator considering the field-circuit-movement coupling is established. Secondly, the three phase short-circuit loss of excitation fault, three phase open-circuit loss of excitation fault, and three phase short-circuit fault on the stator side are analyzed by the simulation method that is applied abroad at present. The fault phenomenon under the stator three phase short-circuit fault is similar to that under the three phase short-circuit loss of excitation. Then, a symmetrical loss of the excitation fault diagnosis system based on wavelet packet analysis and the Back Propagation neural network (BP neural network) is established. At last, we confirm that this system can eliminate the interference of the stator three phase short-circuit fault, accurately diagnose the symmetrical loss of the excitation fault, and judge the type of symmetrical loss of the excitation fault. It saves time to find the fault cause and improves the stability of system operation.


Author(s):  
Tae Jin Kim ◽  
Yoon-Suk Chang

When a sudden rupture occurs in high energy lines such as MSL (Main Steam Line) and safety injection line of nuclear power plants, ejection of inner fluid with high temperature and pressure causes blast wave, and may lead to secondary damage of adjacent major components and/or structures. The objective of this study is to assess integrity of containment wall and steam generator due to the blast wave under a postulated high energy line break condition at the MSL piping. In this context, a preliminary analysis was conducted to examine the blast wave simulation using coupled Eulerian-Lagrangian technique. Subsequently, a finite element analysis was carried out to assess integrity of the structures. As typical results, strain and stress values were calculated at the containment wall and steam generator, which did not exceed their failure criteria.


Sign in / Sign up

Export Citation Format

Share Document