Preliminary Study on Tribological Performance of Straw Based Bio-Fuel

Author(s):  
Yufu Xu ◽  
Qiongjie Wang ◽  
Xianguo Hu ◽  
Jinsi Chen

More and more attention has been paid to alternative fuel in internal combustion engine. One of alternative fuels is to convert straw biomass to biomass fuel. Various methods and apparatuses used for converting straw biomass to bio-fuel were invented and developed. However, alternative fuel from biomass can not be used well in internal combustion engine. The reason is complicated and relative with the separation technology of bio-fuel and corrosion, wear, lubrication and combustion chemical reaction between bio-fuel and the surface of combustion room. It is necessary to study the tribological properties of bio-fuel in order to instead the current gasoline or diesel oil in internal combustion engine in the future. In the present study, the straw based bio-oil obtained by liquidizing process was chosen to evaluate its lubrication by MQ-800 fourball tribometer, in which extreme pressure and friction coefficient and wear resistance were measured respectively. The experimental results showed that the extreme pressure of the bio-fuel was up to 392 N, and the extreme pressure of diesel oil was 333 N. The frictional coefficient of bio-fuel varies between 0.08 and 0.11. The wear scar diameter increased with load slowly in 30min. SEM images indicate that lots of thin and dense belt-like ploughs were presented on the rubbed ball surface. The chemical compositions of the worn zone on the ball surface were analyzed by XPS, the thermal property and variation of chemical compositions of bio-fuel before and after friction and wear tests were studied by TGA and GC-MS, respectively. It was shown that the rubbing surface film was composed of FeS, FeSO4 and organic compounds with C-C, −COH and −COOH groups.

10.14311/1540 ◽  
2012 ◽  
Vol 52 (3) ◽  
Author(s):  
Andrej Chríbik ◽  
Marián Polóni ◽  
Ján Lach

This paper deals with the use of the internal combustion piston engine, which is a drive unit for micro-cogeneration units. The introduction is a brief statement of the nature of gas mixture compositions that are useful for the purposes of combustion engines, together with the basic physical and chemical properties relevant to the burning of this gas mixture. Specifically, we will discuss low-energy gases (syngases) and mixtures of natural gas with hydrogen. The second section describes the conversion of the Lombardini LGW 702 combustion engine that is necessary for these types of combustion gases. Before the experimental measurements, a simulation in the Lotus Engine simulation program was carried out to make a preliminary assessment of the impact on the performance of an internal combustion engine. The last section of the paper presents the experimental results of partial measurements of the performance and emission parameters of an internal combustion engine powered by alternative fuels.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Jun Sun ◽  
Xiaoxia Cai ◽  
Liping Liu

In this paper, the analyses of elastohydrodynamic lubrication (EHL) of crankshaft bearings considering the deformation of the whole cylinder block and crankshaft under load were carried out for the crankshaft bearing system of a four-stroke four-cylinder internal combustion engine. The lubrication of crankshaft bearing was analyzed by dynamic method. The deformation of bearing surface under pressure of oil film was calculated by compliance matrix method. The results show that when the crankshaft deformation under load is considered, compared with the results of not considering the deformation of cylinder block, the maximum film pressure decreases, the minimum film thickness increases, and the end leakage flow-rate and frictional coefficient of journal surface change little in an engine working cycle when considering the deformation of cylinder block. The models of the whole cylinder block and the single main bearing housing were used, respectively, to calculate the deformation of main bearing surface in the analyses. The results show that the calculation accuracy of the elastohydrodynamic lubrication analyses of crankshaft main bearings can be met basically by applying the simple model based on the single main bearing housing to calculate the elastic deformation of main bearing surface.


2008 ◽  
Vol 6 (1) ◽  
pp. 307-329
Author(s):  
Krzysztof Biernat ◽  
Adrian Jeziorkowski

The paper presents most popular biofuels with their basic physicochemical properties in comparison with conventional fuels, the article also contains present normalizations of selected alternative fuels, the possibilities of supplying modern internal combustion engine with biofuels with requiring changes in their constructions were estimated on the basis of collected documentation.


Sign in / Sign up

Export Citation Format

Share Document