Heat Transfer Characteristics for a Single Fin in a Boiling Liquid

2000 ◽  
Author(s):  
Yingzong Bu ◽  
Allan D. Kraus ◽  
Benjamin T. F. Chung

Abstract This work utilizes the cascade algorithm to predict the heat transfer characteristics of a one-dimensional longitudinal fin of rectangular profile in a boiling liquid. In this analysis, the geometric parameters of the fin, the temperature at the fin base and the saturation temperature of the boiling liquid are assumed. With the utilization of experimental boiling heat transfer coefficient curves, the heat flux, temperature profile, and boiling heat transfer coefficient of each point on the fin are obtained. The effectiveness of the fin in a boiling liquid is plotted for different fin thicknesses. It is found that the fin conductivity, boiling liquid, fin geometry and fin base temperature all affect the effectiveness of the fin in boiling. The effectiveness curves clearly indicate whether a fin should be used or when it is advantageous to use a fin in boiling liquid.

Author(s):  
Lorenzo Cremaschi

Driven by higher energy efficiency targets and industrial needs of process intensification and miniaturization, nanofluids have been proposed in energy conversion, power generation, chemical, electronic cooling, biological, and environmental systems. In space conditioning and in cooling systems for high power density electronics, vapor compression cycles provide cooling. The working fluid is a refrigerant and oil mixture. A small amount of lubricating oil is needed to lubricate and to seal the sliding parts of the compressors. In heat exchangers the oil in excess penalizes the heat transfer and increases the flow losses: both effects are highly undesired but yet unavoidable. This paper studies the heat transfer characteristics of nanorefrigerants, a new class of nanofluids defined as refrigerant and lubricant mixtures in which nano-size particles are dispersed in the high-viscosity liquid phase. The heat transfer coefficient is strongly governed by the viscous film excess layer that resides at the wall surface. In the state-of-the-art knowledge, while nanoparticles in the refrigerant and lubricant mixtures were recently experimentally studied and yielded convective in-tube flow boiling heat transfer enhancements by as much as 101%, the interactions of nanoparticles with the mixture still pose several open questions. The model developed in this work suggested that the nanoparticles in this excess layer generate a micro-convective mass flux transverse to the flow direction that augments the thermal energy transport within the oil film in addition to the macroscopic heat conduction and fluid convection effects. The nanoparticles motion in the shearing-induced and non-uniform shear rate field is added to the motion of the nanoparticles due to their own Brownian diffusion. The augmentation of the liquid phase thermal conductivity was predicted by the developed model but alone it did not fully explain the intensification on the two-phase flow boiling heat transfer coefficient reported in previous work in the literature. Thus, additional nano- and micro-scale heat transfer intensification mechanisms were proposed.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Vidushi Chauhan ◽  
Manoj Kumar ◽  
Anil Kumar Patil

Abstract The nucleate pool is a useful technique of heat dissipation in a variety of thermal applications. This study investigates the effect of the gridded metal surface (GMS) with and without protrusions on the heat transfer from a surface maintained at a temperature above the saturation temperature of water. The experimental data have been collected pertaining to boiling heat transfer at atmospheric pressure by varying the grid size of gridded metal surface with protrusions from 6 mm to 22.5 mm placed over a boiling surface having microporous coating. The mean particle diameter of coating is varied as 11, 24, and 66 μm during the experimentation. It is observed that the increase in the boiling heat transfer coefficient of the aluminum disk with GMS with protrusions of grid size 11.5 mm compared to that of the smooth boiling surface is found to be 10.7%. Furthermore, the effect of GMS having protrusions with coated surface on the heat transfer is studied. The results showed that by using GMS having protrusions and with coated surface, the heat transfer is further enhanced. The boiling heat transfer coefficient obtained in case of GMS with protrusions (grid size = 11.5 mm) and microporous-coated surface (dm = 66 μm) shows the maximum enhancement of 39.93% in comparison to the smooth surface.


2015 ◽  
Vol 23 (04) ◽  
pp. 1550032 ◽  
Author(s):  
Nguyen Ba Chien ◽  
Kwang-Il Choi ◽  
Jong-Taek Oh

This study performed a comparison between experimental and computational fluid dynamic (CFD) simulation results of boiling heat transfer coefficient of R410A in a small tube. The experimental data were obtained in the horizontal circular tubes of 3.0[Formula: see text]mm inner diameter, the length of 3000[Formula: see text]mm including: mass flux and heat flux in a range from 300[Formula: see text]kg/m2s to 600[Formula: see text]kg/m2s and from 5[Formula: see text]kW/m2 to 10[Formula: see text]kW/m2, respectively, and the saturation temperature constantly kept at 20[Formula: see text]C. In the simulation procedure, the Eulerian multiphase with wall boiling were obtained. The effects of mass flux and heat flux on the heat transfer coefficient of R410A were analyzed. The comparative data between CFD and experiment was also illustrated.


Author(s):  
Tailian Chen

Boiling on the outside surface of cylindrical tubes is an important heat transfer process widely used in industry applications. It is known that boiling heat transfer coefficient increases with increasing saturation temperature. However, a quantitative measure of saturation temperature effect on boiling heat transfer is not readily available, especially for boiling on surfaces of microstructures. This work was motivated by the need to predict evaporator performance in a chiller while taking into account the effect of saturation temperature on boiling heat transfer coefficient. Experiments of boiling of refrigerant R123 on the micro-structured outside surface of an evaporator tube have been performed at three saturation temperatures in the range of 4.4 to 17.8°C. Water flows inside the test tubes and provides heat to the refrigerant for boiling. In addition, experiments of R123 boiling on smooth cylindrical tubes have been performed at the saturation temperature 4.4°C to provide a baseline to quantify the enhancement in boiling heat transfer due to microstructures on the test tubes. For boiling on the micro-structured surface, the boiling heat transfer coefficient increases by nearly 15% for the temperature range considered in this work. Measurements also showed that heat transfer coefficient for boiling on the test tubes of micro-structures is 12.3 times higher than boiling on the smooth surface. The Cooper correlation over-predicted by 40% the boiling heat transfer coefficient on the smooth cylindrical surface, but significantly under-predicted the performance for boiling on the tubes of micro-structures. It is found that the prediction of Cooper correlation multiplied by an enhancement factor 7.9 has a good agreement with measured heat transfer coefficient for boiling on the tubes of micro-structures at all the three saturation temperatures. Visual observations indicated that bubble departure characteristics on the micro-structured surface are different from those on the smooth surface. In addition to promoted bubble nucleation by re-entrant cavities on the micro-structured surface, the different bubble departure characteristics also contribute to the enhancement of boiling performance.


Author(s):  
Ayman Megahed ◽  
Ibrahim Hassan ◽  
Kristina Cook

The present study investigates the effect of cross-links on flow boiling heat transfer characteristics in rectangular microchannel heat sinks, using FC-72 as the working fluid. The silicon test section consists of 45 cross-linked microchannels, measuring 16 mm in length, with a hydraulic diameter of 248 μm. The parameters investigated include mass flux, heat flux, and exit quality, ranging from 99–275 kg/m2s, 7.2–88.8 kW/m2, and 0.01–0.71, respectively. Thermochromatic liquid crystals have been used in the present study as full-field surface temperature sensors to map the temperature distribution on the heat sink surface. The flow boiling heat transfer coefficient shows a different trend in the cross-linked design relative to the straight microchannel design. The flow boiling heat transfer coefficient increases with increasing exit quality at a constant mass flux, which is caused by the domination of the nucleation boiling mechanism in the cross-link region. The predictions obtained from the existing heat transfer correlations found in the literature significantly under-estimate the present heat transfer measurements, except for the Yu et al. (2002) correlation.


Author(s):  
Kwang-Il Choi ◽  
Maulana Rifaldi ◽  
Agus S. Pamitran ◽  
Jong-Taek Oh

An experimental investigation on the characteristics of two-phase boiling heat transfer of NH3, C3H8 and CO2 in horizontal small stainless steel tubes of 1.5 and 3.0 mm inner diameters are presented in this paper. Experimental data were obtained over a heat flux range of 5 to 70 kW/m2, mass flux range of 50 to 600 kg/m2s, saturation temperature range of 0 to 12°C, and quality up to 1.0. The test section was heated uniformly by applying an electric current to the tubes directly. Nucleate boiling heat transfer was the main contribution, particularly at the low quality region. Laminar flow was observed in the small tubes. The heat transfer coefficient of the present working refrigerants was compared with other correlations. A new boiling heat transfer coefficient correlation based on the superposition model for refrigerants in small tubes was developed.


2021 ◽  
Vol 11 (2) ◽  
pp. 751
Author(s):  
Xuefeng Gao ◽  
Yanjun Zhang ◽  
Zhongjun Hu ◽  
Yibin Huang

As fluid passes through the fracture of an enhanced geothermal system, the flow direction exhibits distinct angular relationships with the geometric profile of the rough fracture. This will inevitably affect the heat transfer characteristics in the fracture. Therefore, we established a hydro-thermal coupling model to study the influence of the fluid flow direction on the heat transfer characteristics of granite single fractures and the accuracy of the numerical model was verified by experiments. Results demonstrate a strong correlation between the distribution of the local heat transfer coefficient and the fracture morphology. A change in the flow direction is likely to alter the transfer coefficient value and does not affect the distribution characteristics along the flow path. Increasing injection flow rate has an enhanced effect. Although the heat transfer capacity in the fractured increases with the flow rate, a sharp decline in the heat extraction rate and the total heat transfer coefficient is also observed. Furthermore, the model with the smooth fracture surface in the flow direction exhibits a higher heat transfer capacity compared to that of the fracture model with varying roughness. This is attributed to the presence of fluid deflection and dominant channels.


Sign in / Sign up

Export Citation Format

Share Document