A Design Methodology to Replicate the Sub-Micron Land-Groove Structure in DVD-RAM Substrates by Injection-Compression Molding

2000 ◽  
Author(s):  
Kibyung Seong ◽  
Su-dong Moon ◽  
Hyun Kim ◽  
Shinill Kang ◽  
Jun-Seok Lee ◽  
...  

Abstract Recently, the sub-micron structured substrates of 0.74 μm track pitch and 800 Å groove depth are required for DVD-RAM, and the track pitch is expected to be narrower as the storage density for optical disk is getting higher. For the accurate replication of the land-groove structure in the stamper to the plastic substrates, it is important to control the injection-compression molding process such that the integrity of the replication for the land-groove structure is maximized. However, the determination of the processing conditions has been relied on experience or trial-and-error. In the present study, polycarbonate substrates were fabricated by injection compression molding and the land-groove structure regarded as one of the most important geometrical properties for DVD-RAM substrates was measured. The effects of the mold temperature and the compression pressure on the integrity of the replication were examined experimentally. An efficient design methodology using the response surface method (RSM) and the central composite design (CCD) technique was developed to obtain the optimum processing conditions which maximize the integrity of the replication with a limited number of experiments. The model used in this study was verified using the analysis-of-variance (ANOVA), and it was found to be adequate within the confidence limit.

2006 ◽  
Vol 505-507 ◽  
pp. 229-234 ◽  
Author(s):  
Yung Kang Shen ◽  
H.J. Chang ◽  
C.T. Lin

The purpose of this paper presents the optical properties of microstructure of lightguiding plate for micro injection molding (MIM) and micro injection-compression molding (MICM). The lightguiding plate is applied on LCD of two inch of digital camera. Its radius of microstructure is from 100μm to 300μm by linearity expansion. The material of lightguiding plate uses the PMMA plastic. This paper uses the luminance distribution to make a comparison between MIM and MICM for the optical properties of lightguiding plate. The important parameters of process for optical properties are the mold temperature, melt temperature and packing pressure in micro injection molding. The important parameters of process for optical properties are the compression distance, mold temperature and compression speed in micro injection-compression molding. The process of micro injection-compression molding is better than micro injection molding for optical properties.


2012 ◽  
Vol 501 ◽  
pp. 321-324 ◽  
Author(s):  
Qiu Xiang Bu ◽  
Jian Yi Zhu ◽  
Qing Zhen Yin

The characteristic of injection compression molding technology and the application of the technology in mould for the plastic optical lens were introduced. The structure and the work principle of the mould for optical lens were designed and described, The stress problem in the injection process was resolved, the deformation problem and dimensional accuracy of product were improved.


2011 ◽  
Vol 52 (4) ◽  
pp. 901-911 ◽  
Author(s):  
Jae-Yun Ho ◽  
Jang Min Park ◽  
Tae Gon Kang ◽  
Seong Jin Park

2012 ◽  
Vol 249-250 ◽  
pp. 472-476 ◽  
Author(s):  
Bambang Arip Dwiyantoro

A numerical study for the simulation of melt in an injection-compression molding process by using moving grid is proposed in this paper. The fully three-dimensional Navier-Stokes equations are solved together with the front transport equation using a front capturing approach. Different from previous studies, the proposed model can take the movement of cavity through a moving grid approach. The melt filling of a disk is conducted to illustrate the applications of the proposed numerical model with several computations under different processing conditions. The numerically predicted results show the influence of compression time or compression speed in determining the molding pressure and the melt temperature.


Sign in / Sign up

Export Citation Format

Share Document