packing pressure
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Vol 58 (4) ◽  
pp. 102-113
Author(s):  
Sukran Katmer ◽  
Cetin Karatas

The shape memory effect, as the most important ability of shape memory polymers, is a working property and provides the design ability to shape memory polymer features. Shrinkage and warpage are important parameters to control the dimensional accuracy of permanent and temporary shapes of an injection moulded shape memory polyurethane (SMPU) part. In this study, the effects of injection moulding parameters on the shrinkage and warpage of the permanent shape of moulded SMPU parts were experimentally investigated. The parameters of injection pressure, melt temperature, mould temperature, packing pressure, packing time, and cooling time, were chosen as the injection moulding control factors. Taguchi�s L27 orthogonal array design table was used with six injection moulding parameters and their three levels. The results showed that the part has different shrinkage ratios in three main directions, namely, the flow direction, perpendicular to the flow direction, and the direction through the thickness. The results of the analysis of variance showed that the cooling time is the most influential parameter on both the shrinkage (except in thickness) and warpage. The shrinkage in the flow direction as well as in perpendicular to the flow direction decreased with increasing the cooling time. Warpage also decreased with increasing the cooling time. Injection pressure and melt temperature were found to be effective on shrinkage in thickness. Effects of mould temperature, packing pressure, and packing time were found to be limited. A statistically significant relationship has been noticed among shrinkage, warpage, and residual stresses during the study.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012055
Author(s):  
M S Rosli ◽  
M H Othman ◽  
Sri Yulis M Amin ◽  
M A I Azman

Abstract Recently, the reinforcement of natural fibres into the polymer has been the main topic due to ecological which can sustain the life of our earth. Natural plant fibre composite has advantages in production in manufacturing product due to biodegradability and environmental protection. The injection moulding process is a major interest within the field of manufacturing technology because of the issue of archive the good quality of the product while minimizing the defect of the product that has been produced. Therefore, this research purpose describes the effects of gigantochloa scortechinii (natural fibre) mix with the polypropylene-nanoclay by using multiple objective optimisations for instance Taguchi Orthogonal Array method for injection moulding processing condition towards multiple responses such as melt flow index, flexural strength, warpage, and shrinkage. The compounding material used in this research is polypropylene, nanoclay, the compatibilizer which is polypropylene graft maleic anhydride (PP-g-MA), and gigantochloa scortechinii which known as bamboo fibre. For comparison purpose, the contents of natural fibre selected are 0wt.%, 3wt.% and 6wt.% towards the processing condition which are packing pressure, melt temperature, screw speed and filling time. Based on the signal to noise ratio analysis results, the highest value of S/NQP is at 6wt.% which is 160.6451 dBi followed by 3wt.% (158.1919 dBi) and 0wt.% (134.8150 dBi). Furthermore, the most influential parameter changed with the existence of Gigantochloa Scortechinii from melt temperature into packing pressure. In conclusion, the optimum values for multiple responses have been affected by the present of Gigantochloa Scortechinii.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3065
Author(s):  
Chao-Tsai Huang ◽  
Tsai-Wen Lin ◽  
Wen-Ren Jong ◽  
Shia-Chung Chen

In this study, the assembly behavior for two injected components made by a family mold system were investigated. Specifically, a feasible method was proposed to evaluate the characteristic length of two components within a family mold system using numerical simulation and experimental validation. Results show that as the packing pressure increases, the product index (characteristic length) becomes worse. This tendency was consistent for both the simulation prediction and experimental observation. However, for the same operation condition setting through a basic test, there were some differences in the product index between the simulation prediction and experimental observation. Specifically, the product index difference of the experimental observation was 1.65 times over that of the simulation prediction. To realize that difference between simulation and experiment, a driving force index (DFI) based on the injection pressure history curve was proposed. Through the DFI investigation, the internal driving force of the experimental system was shown to be 1.59 times over that of the simulation. The DFI was further used as the basis for machine calibration. Furthermore, after finishing machine calibration, the integrated CAE and DOE (called CAE-DOE) strategy can optimize the ease of assembly up to 20%. The result was validated by experimental observation.


Author(s):  
Sanam Shikalgar ◽  
Mahesh Zope ◽  
Pratik Sonawane ◽  
Deepti Marathe

A part to be injection molded is evaluated by simulation for warpage analysis. The plastic part is a supporting plate to be used in the oil filter and it’s made out of nylon material. The effect of various parameters from design to processing of plastic parts is considered and validated by simulation results. The research involved in this was designing mould, computer-aided engineering, simulation analysis, and determination of plastic part processing conditions. In this work PA66 (Grade name – Zytel 70G13HS1LNC010) material is used and the material contains 13 % of fiber. Fiber orientation is nothing but the distribution of plastic melt inside the cavity and it also plays important role in deciding the warpage of part. The effect of process parameters on part warpage is investigated from various aspects in comparison with the conventional runner system. Hot runner mould system with innovative cooling channel designs is good results-driven. Results of simulations reveal that elevated mould temperature reduces the unwanted freezing time during the injection phase and thus improves mouldability and enhances part quality. Under similar mould temperature conditions, the effect of process parameters on warpage decreases according to the following order, packing time, packing pressure, melt temperature, injection pressure, and cooling time respectively.


2021 ◽  
Author(s):  
Bikram Solanki ◽  
Hapreet Singh ◽  
Tanuja Sheorey

Abstract Injection molding is an efficient and most economical process employed for the mass production of plastic gears and helps to reduce the processing time and cost required to produce the desired geometry. However, significant process and product qualification of plastic gears face the shrinkage and sink marks issues during cooling and after ejection. In present work, the best gate locations and flow resistance analysis along with a polypropylene (PP) were carried out using Autodesk Moldflow Insight 2019.05. The numerical and experimental study was conducted to evaluate the effect of packing pressure, packing time, and melt temperature on diametric shrinkage, mass, and sink marks of PP gear. The results show that by increasing packing pressure and packing time, the diametric shrinkage decreased but mass increased. However, as the melt temperature increased the diametric shrinkage also increased but the mass decreased. The minimum diametric shrinkage of 0.562% was found in numerical analysis and 1.619% found in an experimental analysis at the same injection molding process parameters. Mostly, the sink marks were observed in the gear surface between hub and dedendum circle.


2021 ◽  
Vol 11 (8) ◽  
pp. 3433
Author(s):  
Tamem Salah ◽  
Aiman Ziout

This research examined the optimization of the sustainable manufacturing process for polyester-based polymers/Fe3O4 nanocomposite foaming. The foamed structure was achieved by using a solid-state foaming process, where the prepared foams were tested in order to ascertain the optimum foaming parameters with the highest foaming ratios and the lowest foaming densities. The foaming parameters used in this research were the polymer type, nanoparticle percentage, packing pressure, holding time, foaming temperature, and foaming time. Two levels were selected for each factor, and a Taguchi plan was designed to determine the number of experiments required to reach a conclusion. Further characterization techniques, namely, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were used with the original samples to gain a better understanding of their structure and chemical composition. The data analysis showed that regardless of the parameters used, a high foaming ratio resulted in a low density. The introduction of nanoparticles (NPs) to the polymer structure resulted in higher foaming ratios. This increment in foaming ratio was noticeable on Corro-Coat PE Series 7® (CC) polymer more than Jotun Super Durable 2903® (JSD). The optimum parameters to prepare the highest foaming ratios were as follows: CC polymer with 2% NPs, compressed under a pressure of 10 K lbs. for a 3 min holding time and foamed at 290 °C for 15 min in the oven.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2409
Author(s):  
Can Weng ◽  
Jiangwei Li ◽  
Jun Lai ◽  
Jiangwen Liu ◽  
Hao Wang

Micro-injection molding has attracted a wide range of research interests to fabricate polymer products with nanostructures for its advantages of cheap and fast production. The heat transfer between the polymer and the mold insert is important to the performance of products. In this study, the interface thermal resistance (ITR) between the polypropylene (PP) layer and the nickel (Ni) mold insert layer in micro-injection molding was studied by using the method of non-equilibrium molecular dynamics (NEMD) simulation. The relationships among the ITR, the temperature, the packing pressure, the interface morphology, and the interface interaction were investigated. The simulation results showed that the ITR decreased obviously with the increase of the temperature, the packing pressure and the interface interaction. Both rectangle and triangle interface morphologies could enhance the heat transfer compared with the smooth interface. Moreover, the ITR of triangle interface was higher than that of rectangle interface. Based on the analysis of phonon density of states (DOS) for PP-Ni system, it was found that the mismatch between the phonon DOS of the PP atoms and Ni atoms was the main cause of the interface resistance. The frequency distribution of phonon DOS also affected the interface resistance.


2020 ◽  
Vol 12 (3) ◽  
pp. 16-25
Author(s):  
Ashish Goyal ◽  
Vimal Kumar Pathak ◽  
Siddharth Ogra ◽  
Anand Pandey

The present study analyzes the important characteristics of plastic injection molding machining process. The polypropylene (PP) material has used as a specimen and effect of melt temperature, packing pressure and injection pressure has been investigated on the tensile modulus and elongation. Total 20 experiments have been performed to analyses the results. Response surface methodology (RSM) was adopted for optimization of injection molding process parameters. The experiments were conducted by using central composite design. The analysis of variance (ANOVA) techniques was used for selection of significant and non-significant parameters. The experimental results show that the RSM influence elongation by 87.04%, 11.52%, 1.43% and tensile modulus by 85.35%, 11.4%, 3.25%. Keywords: Injection molding; polypropylene; tensile modulus; elongation


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2855 ◽  
Author(s):  
Tran Minh The Uyen ◽  
Nguyen Truong Giang ◽  
Thanh Trung Do ◽  
Tran Anh Son ◽  
Pham Son Minh

Simulations and experiments were conducted with gas temperatures of 200–400 °C to investigate the impact of external gas-assisted mold temperature control (Ex-GMTC) on the quality of weld line of molding products. In the heating step, the heating rate was 19.6 °C/s from 30 to 128.5 °C in the first 5 s in a 400 °C gas environment. When applied to heating the weld line area of an injection mold, Ex-GMTC improved the appearance of the weld line when the cavity temperature was preheated to 150 °C. For the tensile strength test, a melt flow simulation comparing the packing pressure of different mesh thicknesses revealed that Ex-GMTC helped maintain a high pressure in the weld line area in different packing periods. This was verified by an experiment where Ex-GMTC was applied with 400 °C gas to change the mesh area temperature. The result indicated that an increase in the weld line area temperature from 60 to 180 °C improves the tensile strength of all mesh thicknesses, which was more pronounced with thinner parts, especially at 0.4 mm. The simulations revealed that high temperature is concentrated in the weld line area of the cavity surface, thus reducing the energy wasted during heating.


Sign in / Sign up

Export Citation Format

Share Document