A Study of Processing Conditions on the Properties of Diffraction Optical Elements by Injection/Compression Molding Process

2003 ◽  
Vol 18 (2) ◽  
pp. 194-198 ◽  
Author(s):  
S. C. Tseng ◽  
C. L. Liao
2007 ◽  
Vol 364-366 ◽  
pp. 1211-1214 ◽  
Author(s):  
Chao Chang Arthur Chen ◽  
Shi Chi Kao

This research aimed to develop a novel two-stage micro injection compression molding (μ-ICM) process for fabrication of plastic diffractive optic elements (DOE). The DOE was designed with the spherical coefficients and the Fresnel lens. A piezo actuator was installed inside the mold plate for activating the mold insert for the second compression motion for micro ICM of the DOE lens. The first experiment proceeded to find the operation window of Fresnel lens and then compare the product weight of flat spherical lens by injection molding (IM), injection compression molding (ICM) and μ-ICM. The second experiment was to investigate the effectiveness of micro compression activated by the piezo actuator by the transfer ratio of grooves (TRG) of the DOE lens with spherical lens and Fresnel lens. Results showed that the μ-ICM of the DOE can obtain the highest TRG than that of IM and conventional ICM processes. Therefore, results of this research can be explored to related aspheric optical elements with micro features, such as fine lens used in the zoom lens of camera.


2000 ◽  
Author(s):  
Kibyung Seong ◽  
Su-dong Moon ◽  
Hyun Kim ◽  
Shinill Kang ◽  
Jun-Seok Lee ◽  
...  

Abstract Recently, the sub-micron structured substrates of 0.74 μm track pitch and 800 Å groove depth are required for DVD-RAM, and the track pitch is expected to be narrower as the storage density for optical disk is getting higher. For the accurate replication of the land-groove structure in the stamper to the plastic substrates, it is important to control the injection-compression molding process such that the integrity of the replication for the land-groove structure is maximized. However, the determination of the processing conditions has been relied on experience or trial-and-error. In the present study, polycarbonate substrates were fabricated by injection compression molding and the land-groove structure regarded as one of the most important geometrical properties for DVD-RAM substrates was measured. The effects of the mold temperature and the compression pressure on the integrity of the replication were examined experimentally. An efficient design methodology using the response surface method (RSM) and the central composite design (CCD) technique was developed to obtain the optimum processing conditions which maximize the integrity of the replication with a limited number of experiments. The model used in this study was verified using the analysis-of-variance (ANOVA), and it was found to be adequate within the confidence limit.


2012 ◽  
Vol 501 ◽  
pp. 321-324 ◽  
Author(s):  
Qiu Xiang Bu ◽  
Jian Yi Zhu ◽  
Qing Zhen Yin

The characteristic of injection compression molding technology and the application of the technology in mould for the plastic optical lens were introduced. The structure and the work principle of the mould for optical lens were designed and described, The stress problem in the injection process was resolved, the deformation problem and dimensional accuracy of product were improved.


2011 ◽  
Vol 52 (4) ◽  
pp. 901-911 ◽  
Author(s):  
Jae-Yun Ho ◽  
Jang Min Park ◽  
Tae Gon Kang ◽  
Seong Jin Park

2012 ◽  
Vol 249-250 ◽  
pp. 472-476 ◽  
Author(s):  
Bambang Arip Dwiyantoro

A numerical study for the simulation of melt in an injection-compression molding process by using moving grid is proposed in this paper. The fully three-dimensional Navier-Stokes equations are solved together with the front transport equation using a front capturing approach. Different from previous studies, the proposed model can take the movement of cavity through a moving grid approach. The melt filling of a disk is conducted to illustrate the applications of the proposed numerical model with several computations under different processing conditions. The numerically predicted results show the influence of compression time or compression speed in determining the molding pressure and the melt temperature.


Sign in / Sign up

Export Citation Format

Share Document