Experimentally Validated Vibration Fatigue Life Prediction Model for Ball Grid Array Solder Joint

2000 ◽  
Author(s):  
T. E. Wong ◽  
F. W. Palmieri ◽  
L. A. Kachatorian

Abstract A newly developed methodology is used to support test validation of ball grid array (BGA) solder joint vibration fatigue life prediction model. This model is evolved from an empirical formula of universal slopes, which is derived from high-cycle fatigue test data using a curve fitting technique over 29 different materials of metals. To develop the BGA solder joint vibration fatigue life prediction model, a test vehicles (TV), on which various sizes of BGA daisy-chained packages are soldered, is first designed, fabricated and subjected to random vibration tests with continuously monitoring the solder joint integrity. Based on the measurement results, a destructive physical analysis is then conducted to further verify the failure locations and crack paths of the solder joints. Next, a method to determine the stresses/strains of BGA solder joints resulting from exposure of the TV to random vibration environments is developed. In this method, a 3-D modeling technique is used to simulate the vibration responses of the BGA packages. Linear static and dynamic finite element analyses with MSC/NASTRAN™ computer code, combined with a volume-weighted average technique, are conducted to calculate the effective strains of the solder joints. In the calculation process, several in-house developed Fortran programs, in conjunction with the outputs obtained from MSC/NASTRAN™ static and frequency response analyses, are used to perform the required computations. Finally, a vibration fatigue life model is established with two unknown parameters, which can be determined by correlating the derived solder effective strains to the test data. This test-calibrated model is then recommended to serve as an effective tool to determine the integrity of the BGA solder joints during vibration. Selecting more study cases with various package sizes, solder ball configurations, vibration profiles to further calibrate this model is also recommended. An example of a 313-pin plastic and 304-pin ceramic BGAs is illustrated in the present study.

Author(s):  
T. E. Wong ◽  
C. Chu

A thermal fatigue life prediction model of a ceramic column grid array (CCGA) solder joint assembly has been developed when the 90Pb/10Sn solder columns of the CCGA package are soldered onto the printed circuit board with either tin-lead or lead-free solder paste. This model was evolved from an empirically derived formula by correlating the solder nonelastic strain energy density increment to the fatigue life test data. To develop the solder joint fatigue life prediction model, a nonlinear finite element analysis (FEA) was conducted using the ABAQUS computer code. A thermal fatigue life prediction model was then established. The test results, obtained from various sources in which tin-lead and lead-free solder pastes on PCB were used, combined with the FEA derived nonelastic strain energy density per temperature cycle, ΔW, were used to calibrate the proposed life prediction model. In the analysis, 3-D finite element global- and sub-modeling techniques were used to determine the ΔW of the CCGA solder joints when subjected to temperature cycling. The analysis results show that: 1) solder joint would typically fail across solder column instead of along solder pad interfaces; and 2) higher nonelastic strain energy densities of solder occur at the solder columns at the package corners and these solder joints would fail first. These analysis predictions are consistent with the test observations. In the model calibration process, the 625- and 1657-pin CCGA test results, which were cycled between 20°C/90°C, 0°C/100°C, -55°C/110°C, or -55°C/125°C, were reasonably well correlated to the predicted values of ΔW. Therefore, the developed life prediction model could be used and is recommended to serve as an effective tool to determine the integrity of the CCGA solder joints during temperature cycling. In addition, the following future work is recommended: 1) selecting more study cases with various solder joint configurations, package sizes, environmental profiles, etc. to further calibrate this life prediction model; 2) using this model to conduct parametric studies to identify critical factors impacting solder joint fatigue life and then seek an optimum design; and 3) developing a simplified method instead of the FEA approach to make preliminary thermal fatigue life estimates of the CCGA solder joints.


2003 ◽  
Vol 125 (1) ◽  
pp. 120-125 ◽  
Author(s):  
Hong Tang ◽  
Cemal Basaran

A thermomechanical fatigue life prediction model based on the theory of damage mechanics is presented. The damage evolution, corresponding to the material degradation under cyclic thermomechanical loading, is quantified thermodynamic framework. The damage, as an internal state variable, is coupled with unified viscoplastic constitutive model to characterize the response of solder alloys. The damage-coupled viscoplastic model with kinematic and isotropic hardening is implemented in ABAQUS finite element package to simulate the cyclic softening behavior of solder joints. Several computational simulations of uniaxial monotonic tensile and cyclic shear tests are conducted to validate the model with experimental results. The behavior of an actual ball grid array (BGA) package under thermal fatigue loading is also simulated and compared with experimental results.


1999 ◽  
Vol 121 (3) ◽  
pp. 186-190 ◽  
Author(s):  
T. E. Wong ◽  
L. A. Kachatorian ◽  
H. M. Cohen

A thermal fatigue life prediction model of J-lead solder joint assembly has been developed. This model is evolved from an empirically derived formula based on modified Manson-Coffin fatigue life Prediction theory. To estimate solder joint fatigue life, nonlinear finite element analysis (FEA) was conducted using the ABAQUS™ computer code. The analysis results show that cracks are initiated and propagated from both the heel and the toe of the solder joint toward the center portion of the joint. This condition results in the solder joint fatigue life degradation and is included in the model development. The fatigue life prediction model is then calibrated to life cycling test results, which were provided by Jet Propulsion Laboratory (JPL/NASA). The developed life prediction model, combined with the nonelastic strains derived from FEA and Miner’s cumulative damage law, was used to predict the cumulative damage index of the solder joint under NASA’s thermal cycling environment (between −55°C and 100°C). The analysis results indicate that this solder joint has a 50 percent failure probability when the solder joint is exposed up to 5206 thermal cycles. To shorten the test time, a modified thermal cycling profile was proposed. This profile is the same as the NASA thermal cycling environment except using the high end of the dwell temperature at 125°C. The analysis results show that a 50 percent failure probability of the solder joint would occur after the solder joint is exposed to 3500 cycles of the NASA thermal environment and followed by 1063 cycles of the modified thermal profile. In conclusion, the developed life prediction model is recommended to serve as an effective tool to integrate the process of design selection, quality inspection, and qualification testing in a concurrent engineering process. It is also recommended to conduct a micro-section in the solder joint to verify the solder crack paths and further validate the life prediction model. When additional thermal cycles have been added into the test specimens, recalibrating this model by test is also recommended.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Jiang ◽  
Gun Jin Yun ◽  
Li Zhao ◽  
Junyong Tao

Novel accelerated random vibration fatigue test methodology and strategy are proposed, which can generate a design of the experimental test plan significantly reducing the test time and the sample size. Based on theoretical analysis and fatigue damage model, several groups of random vibration fatigue tests were designed and conducted with the aim of investigating effects of both Gaussian and non-Gaussian random excitation on the vibration fatigue. First, stress responses at a weak point of a notched specimen structure were measured under different base random excitations. According to the measured stress responses, the structural fatigue lives corresponding to the different vibrational excitations were predicted by using the WAFO simulation technique. Second, a couple of destructive vibration fatigue tests were carried out to validate the accuracy of the WAFO fatigue life prediction method. After applying the proposed experimental and numerical simulation methods, various factors that affect the vibration fatigue life of structures were systematically studied, including root mean squares of acceleration, power spectral density, power spectral bandwidth, and kurtosis. The feasibility of WAFO for non-Gaussian vibration fatigue life prediction and the use of non-Gaussian vibration excitation for accelerated fatigue testing were experimentally verified.


2012 ◽  
Vol 577 ◽  
pp. 127-131 ◽  
Author(s):  
Peng Wang ◽  
Tie Yan ◽  
Xue Liang Bi ◽  
Shi Hui Sun

Fatigue damage in the rotating drill pipe in the horizontal well of mining engineering is usually resulted from cyclic bending stresses caused by the rotation of the pipe especially when it is passing through curved sections or horizontal sections. This paper studies fatigue life prediction method of rotating drill pipe which is considering initial crack in horizontal well of mining engineering. Forman fatigue life prediction model which considering stress ratio is used to predict drill string fatigue life and the corresponding software has been written. The program can be used to calculate the stress of down hole assembly, can predict stress and alternating load in the process of rotating-on bottom. Therefore, establishing buckling string fatigue life prediction model with cracks can be a good reference to both operation and monitor of the drill pipe for mining engineering.


Sign in / Sign up

Export Citation Format

Share Document