scholarly journals Mechanisms Controlling the Performance and Durability of Thermal Barrier Coatings

2000 ◽  
Author(s):  
Daniel R. Mumm ◽  
Anthony G. Evans

Abstract Thermal protection systems based on ceramic thermal barrier coatings (TBCs) are used extensively to protect hot-section components in gas turbine engines. They comprise thermally insulating ceramic coatings, deposited on an aluminum-containing intermetallic bond coat (BC) that provides oxidation protection. A thin thermally-grown oxide (TGO layer forms between the TBC and BC during cyclic thermal exposure. Each of the system constituents evolves in service and all interact during thermal cycling to control the thermo-mechanical performance of the system. Exposed to thermal cycling conditions, TBC systems are susceptible to loss of adhesion and spalling failures. Multiple failure mechanisms exist, dependent upon differing thermal histoiy and processing approach for various coating systems. Coating failure is ultimately controlled by the large residual compression in the TGO and its role in amplifying the effects of imperfections in the vicinity of the TGO. The failure occurs through a process involving crack nucleation, propagation and coalescence events. For a particular commercial system, it is found that the TGO ‘ratchets’ into the bond coat with each thermal cycle, at an array of interfacial sites. The displacements induce strains in the superposed TBC that cause it to crack. The cracks extend laterally as the TGO ratcheting process proceeds, until the cracks from neighboring sites coalesce. Once this happens, the system fails by large scale buckling. It is shown that the displacements are ‘vectored’ by a lateral component of the growth strain in the TGO. The relative roles of bond coat visco-plasticity, initial interface morphology, and phase evolution are discuss. The behavior observed for this system is compared with predictions of a ratcheting model, as well as with the behavior observed for other commercial coating systems.

2010 ◽  
Vol 66 ◽  
pp. 74-79
Author(s):  
Jana Schloesser ◽  
Martin Bäker ◽  
Joachim Rösler ◽  
Robert Pulz

In rocket engine combustion chambers, the cooling channels experience extremely high temperatures and environmental attack. Thermal protection can be provided by Thermal Barrier Coatings. Due to the need of good heat conduction, the inner combustion liner is made of copper. The performance of a standard coating system for nickel based substrates is investigated on copper substrates. Thermal cycling experiments are performed on the coated samples. Due to temperature limitations of the copper substrate material, no thermally grown oxide forms at the interface of the thermal barrier coating and the bond coat. Delamination of the coatings occurs at the interface between the substrate and the bond coat due to oxide formation of the copper at uncoated edges. In real service a totally dense coating can probably not be assured which is the reason why this failure mode is of importance. Different parameters are used for thermal cycling to understand the underlying mechanisms of delamination. Furthermore, laser heating experiments account for the high thermal gradient in real service. Pilot tests which led to a delamination of the coating at the substrate interface were performed successfully.


2000 ◽  
Author(s):  
Anthony G. Evans

Abstract Thermal protection systems based on thermal barrier coatings are widely used in turbine engines for propulsion and power generation. They commonly comprise oxide thermal barriers coatings (TBCs) deposited on an intermetallic bond coat (BC), and provide simultaneous thermal and oxidation protection. The benefit of these coatings resides in their ability to inhibit degradation of the underlying structural superalloy component by thermo-mechanical fatigue and oxidation. Existing commercial coatings are well-engineered with established durability and cost benefits. However, they lose adhesion and spall from the underlying metal with cyclic thermal exposure. Because coating failure occurs in a stochastic manner, with no assured cyclic life, the coatings cannot be used in a prime-reliant manner. Prime reliability is only achievable if a high level of basic understanding is gained about failure mechanisms, and material responses, that arise upon thermal cycling. Because of differing manufacturing approaches and operating scenarios, several specific mechanisms are involved. Present understanding of these phenomena has highlighted several nuances and challenges in developing thermal barrier coatings for use as prime-reliant components. This talk will review the current understanding of factors affecting coating durability and presents relationships between the durability, the governing material properties and the salient morphological features. The durability of thermal barrier coatings is governed by a sequence of crack nucleation, propagation and coalescence events that accumulate prior to final failure by large scale buckling and spalling.


2017 ◽  
Vol 62 (3) ◽  
pp. 1433-1437
Author(s):  
A. Jasik

Abstract The paper presents the results of numerical calculations of temperature and thermal stress distribution in thermal barrier coatings deposited by thermal spraying process on the nickel based superalloy. An assumption was made to apply conventional zirconium oxide modified with yttrium oxide (8YSZ) and apply pyrochlore type material with formula La2Zr2O7. The bond coat was made of NiCoCrAlY. Analysis of the distribution of temperature and stresses in ceramic coatings of different thicknesses was performed in the function of bond-coat thickness and the type of ceramic insulation layer. It was revealed that the thickness of NiCrAlY bond-coat has not significant influence on the stress distribution, but there is relatively strong effect on temperature level. The most important factor influenced on stress distribution in TBC system is related with type and properties of ceramic insulation layer.


2013 ◽  
Vol 441 ◽  
pp. 91-95 ◽  
Author(s):  
Guan Xiong Lu ◽  
Li Jun Hao ◽  
Fu Xing Ye

In this study, thermal analysis and thermal shock test of 8wt.% yttria stablized zirconia (8YSZ) thermal barrier coatings (TBCs) on low heat rejection (LHR) diesel engine have been conducted. The influence of TBCs on temperature distribution of piston was discussed by employing ANSYS codes. The thermal shock resistance test was carried out by placing the samples under flame jet heating and compressed air cooling in turn. Two kinds of thermal cycling modes with different periods were used to investigate the role of cycling frequency in coatings failure. As the frequency rose, the service life of coatings significantly decreased. The spallation of coatings happened at the interface between bond coat and substrate. The stress calculation results indicated that considerable stress caused by thermal mismatch was one of the main reasons for TBCs failure. The heat affected zone (HAZ) under the bond coat inhibited the diffusion between the bond coat and substrate. The oxide layer consisting of Mg and Al oxides under the HAZ was harmful to the bond between bond coat and substrate, which was another main reason for the spallation of coatings.


Author(s):  
Stephanie A. Wimmer ◽  
Virginia G. DeGiorgi ◽  
Edward P. Gorzkowski ◽  
John Drazin

Thermal protection of components such as turbine blades is often done with thermal barrier coatings which are typically ceramic materials. Methods to manufacture ceramic coatings are being developed to create microstructures that optimize thermal protection without degrading mechanical properties of the coating. The coating requires sufficient mechanical properties to remain in place during loads associated with the operation of the component. The work presented in this paper is part of a broader effort that focuses on novel processing techniques. A fabrication method of interest is the inclusion of spherical micron-sized pores to scatter photons at high temperatures along with nano-sized grains to scatter phonons. Pores are sized and distributed so that mechanical strength is maintained. In the current work, yttria-stabilized zirconia (YSZ) is modeled. Three-dimensional microstructures representing YSZ are computationally generated. The defect sizes and orientations are generated to match an experimentally observed distribution. The defects are either randomly or regularly placed in the microstructural models. Stress-displacement analysis is used to determine effective bulk material properties. Comparisons are made to prior two-dimensional work and to experimental measurements available in the literature as appropriate. The influences that defect distributions and three dimensional effects have on the effective bulk material properties are quantified. This work is a preliminary step toward understanding the impacts that micron sized pores, voids and cracks have on thermal and mechanical characteristics. The goal is to facilitate optimizing the microstructure for thermal protection and strength retention.


Sign in / Sign up

Export Citation Format

Share Document