Error Assessment and Error Reduction in Production-Level RANS-Based Drag Predictions

Author(s):  
Donald W. Davis ◽  
Scot A. Slimon

Assessments of the effects of several numerical parameters on RANS-based drag prediction accuracy are presented. The parameters include grid cell size adjacent to solid walls, grid stretch ratio, grid stretch transition, artificial dissipation scheme, and artificial dissipation coefficient. Results from extensive parametric studies on a two-dimensional flat plate are reported. Based on the results of these studies, guidelines for high-accuracy drag predictions using both second- and fourth-order accurate, finite-difference-based solvers are proposed. In addition, error assessments obtained with a single grid using second- and fourth-order accurate solutions are compared to multiple-grid Richardson’s extrapolation approaches. The single-grid approach is shown to provide a significant improvement in both accuracy and error assessment relative to the multiple-grid approach.

2013 ◽  
Vol 13 (18) ◽  
pp. 9285-9302 ◽  
Author(s):  
J. Rissman ◽  
S. Arunachalam ◽  
M. Woody ◽  
J. J. West ◽  
T. BenDor ◽  
...  

Abstract. This study examined the impacts of aircraft emissions during the landing and takeoff cycle on PM2.5 concentrations during the months of June and July 2002 at the Hartsfield–Jackson Atlanta International Airport. Primary and secondary pollutants were modeled using the Advanced Modeling System for Transport, Emissions, Reactions, and Deposition of Atmospheric Matter (AMSTERDAM). AMSTERDAM is a modified version of the Community Multiscale Air Quality (CMAQ) model that incorporates a plume-in-grid process to simulate emissions sources of interest at a finer scale than can be achieved using CMAQ's model grid. Three fundamental issues were investigated: the effects of aircraft on PM2.5 concentrations throughout northern Georgia, the differences resulting from use of AMSTERDAM's plume-in-grid process rather than a traditional CMAQ simulation, and the concentrations observed in aircraft plumes at subgrid scales. Comparison of model results with an air quality monitor located in the vicinity of the airport found that normalized mean bias ranges from −77.5% to 6.2% and normalized mean error ranges from 40.4% to 77.5%, varying by species. Aircraft influence average PM2.5 concentrations by up to 0.232 μg m−3 near the airport and by 0.001–0.007 μg m−3 throughout the Atlanta metro area. The plume-in-grid process increases concentrations of secondary PM pollutants by 0.005–0.020 μg m−3 (compared to the traditional grid-based treatment) but reduces the concentration of non-reactive primary PM pollutants by up to 0.010 μg m−3, with changes concentrated near the airport. Examination of subgrid-scale results indicates that median aircraft contribution to grid cells is higher than median puff concentration in the airport's grid cell and outside of a 20 km × 20 km square area centered on the airport, while in a 12 km × 12 km square ring centered on the airport, puffs have median concentrations over an order of magnitude higher than aircraft contribution to the grid cells. Maximum puff impacts are seen within the 12 km × 12 km ring, not in the airport's own grid cell, while maximum grid cell impacts occur within the airport's grid cell. Twenty-one (21)% of all aircraft-related puffs from the Atlanta airport have at least 0.1 μg m−3 PM2.5 concentrations. Near the airport, median daily puff concentrations vary between 0.017 and 0.134 μg m−3 (0.05 and 0.35 μg m−3 at ground level), while maximum daily puff concentrations vary between 6.1 and 42.1 μg m−3 (7.5 and 42.1 μg m−3 at ground level) during the 2-month period. In contrast, median daily aircraft contribution to grid concentrations varies between 0.015 and 0.091 μg m−3 (0.09 and 0.40 μg m−3 at ground level), while the maximum varies between 0.75 and 2.55 μg m−3 (0.75 and 2.0 μg m−3 at ground level). Future researchers may consider using a plume-in-grid process, such as the one used here, to understand the impacts of aircraft emissions at other airports, for proposed future airports, for airport expansion projects under various future scenarios, and for other national-scale studies specifically when the maximum impacts at fine scales are of interest.


Author(s):  
Jinliang Yuan ◽  
Fuan Ren ◽  
Bengt Sunde´n ◽  
Peiting Sun

In this study, a three-dimensional calculation method has been developed to simulate and analyze steam reforming of natural gas, and the effects on various transport processes in a duct from a compact steam reformer. The reformer conditions such as the combined thermal boundary conditions on solid walls, mass balances associated with the reforming reactions and gas permeation to/from the porous catalyst layer are applied in the analysis. Momentum and heat transport together with fuel gas species equations have been solved by coupled source terms and variable thermo-physical properties (such as density, viscosity, specific heat, etc.) of the fuel gas mixture. The predicted results are presented and discussed for a composite duct consisting of a porous catalyst reaction area, the flow duct and solid layers. Parametric studies are conducted and the results show that the variables, such as fuel reformer temperatures and duct configuration, have significant effects on the transport processes and reformer performance.


1994 ◽  
Vol 05 (02) ◽  
pp. 237-239 ◽  
Author(s):  
G.S.R. SARMA

Parametric studies using the plane Couette flow as a simple model for shear flows to test different physico-chemical aspects of the very complex high-temperature chemically reacting flows occurring in hypersonic flow configurations are under way. Some typical results on the dissociation/recombination reactions of diatomic gases as to the effects of the choice of transport coefficient modelling and reaction rate coefficient data on the practically relevant quantitites such as heat transfer and skin friction at the solid walls are discussed.


Author(s):  
G. Freskos ◽  
O. Penanhoat

The demand for efficiency in today’s and in future civil aircraft is such that experimental studies alone do not suffice to optimize aircraft aerodynamics. In this context, much effort has been spent in the past decade to develop numerical methods capable of reproducing the phenomena that occur in the engine flow field. This paper presents some studies in Computational Fluid Dynamics related to supersonic inlets. Two approaches are considered. First, there is a need for code capable of calculating in a cost-efficient way the entire flow field around a 2D or 3D inlet, e.g. to perform parametric studies. To this effect, a computing method based on grid construction by mesh generator dedicated to inlet shapes and on the discretization of the unsteady Euler equations with an explicit upwind scheme was developed. The treatment of complex geometries led us to adopt a multiblock grid approach. Therefore particular attention was paid to the treatment of the boundary conditions between the different domains. Secondly, there is a need for code that can capture local phenomena in order to get a better understanding of inlet behaviour (shock/shock, shock/boundary layer interactions, etc.). To this effect a 2D turbulent Navier-Stokes code is used. The 2 equations k-ε turbulence model included in the program seems to be one of the most successful models for calculating flow realistically. Correction of the near-wall influence extends its capability to complex flow configurations, e.g. those with separated zones.


1973 ◽  
Vol 16 (2) ◽  
pp. 201-212 ◽  
Author(s):  
Elizabeth Carrow ◽  
Michael Mauldin

As a general index of language development, the recall of first through fourth order approximations to English was examined in four, five, six, and seven year olds and adults. Data suggested that recall improved with age, and increases in approximation to English were accompanied by increases in recall for six and seven year olds and adults. Recall improved for four and five year olds through the third order but declined at the fourth. The latter finding was attributed to deficits in semantic structures and memory processes in four and five year olds. The former finding was interpreted as an index of the development of general linguistic processes.


1975 ◽  
Author(s):  
Richard F. Nash ◽  
Gordon G. Gallup ◽  
Sara Garrison

Sign in / Sign up

Export Citation Format

Share Document