Finite Element Analysis of Solidifying Processes in Rapid Freeze Prototyping

Author(s):  
Qingbin Liu ◽  
Ming C. Leu

Rapid Freeze Prototyping (RFP) can generate three-dimensional ice patterns from CAD models by depositing and solidifying water droplets layer by layer. One important issue of the RFP process is how to fabricate the ice pattern to desired accuracy in an acceptable short time. The waiting time between two successive layers is a critical factor. A waiting time that is too short will lead to unacceptable part accuracy, while a waiting time that is too long will lead to an excessive build time. Finite Element Analysis is employed in the study, as described in the present paper, to predict the solidification time of a newly deposited water layer and to develop a better understanding of heat transfer during the RFP process. ANSYS is utilized to develop software for the prediction of solidification time. Effect of various process parameters on the solidification time of an ice column and a vertical ice wall is investigated. These parameters include environment temperature, heat convection coefficient, initial water droplet temperature, layer thickness, and waiting time between two successive layers.

2007 ◽  
Vol 129 (4) ◽  
pp. 810-820 ◽  
Author(s):  
Qingbin Liu ◽  
Ming C. Leu

Rapid freeze prototyping (RFP) can generate three-dimensional ice patterns from computer-aided design (CAD) models by depositing and solidifying water droplets layer by layer. One important issue of the RFP process is how to fabricate the ice pattern to desired accuracy in an acceptable short time. The waiting time between two successive layers is a critical factor. A waiting time that is too short will lead to unacceptable part accuracy, while a waiting time that is too long will lead to an excessive build time. Finite element analysis is employed in this study to predict the solidification time of a newly deposited water layer and to develop a better understanding of heat transfer during the RFP process. ANSYS Parametric Development Language (APDL) is utilized to develop software for the prediction of solidification time. The result is used to investigate the effect of various process parameters on the solidification time of an ice column and a vertical ice wall. These parameters include environment temperature, heat convection coefficient, initial water droplet temperature, layer thickness, and waiting time between two successive layers. Experiments are conducted and the measured results are shown to agree well with simulation results.


2010 ◽  
Vol 426-427 ◽  
pp. 151-155 ◽  
Author(s):  
Ming Di Wang ◽  
Shi Hong Shi ◽  
Dun Wen Zuo

For the disadvantages of the lateral powder feeding and multi-lateral coaxial powder feeding process in laser cladding rapid prototyping process, a new process of hollow focusing laser, powder tube being middle and inside-beam powder feeding is put forward, which can be especially apply in laser cladding. In this paper, the finite element analysis model of temperature of the laser cladding using inside-beam powder feeding is established, temperature distribution of the single-layer in laser cladding is researched, which is theoretically useful for controlling the quality of microstructure and to prevent the cracks. When adopting finite element analysis software, Ansys, the layer unit is acted layer-by-layer, the full simulation of real cladding deposition process will be realized if moving boundary. Finally, some experiments validate the simulation results. Compared with the original mode, it can be found that if adopting the system of the laser cladding rapid manufacturing using inside-beam powder feeding, the temperature distribution is different and it will lead to a denser microstructure.


2007 ◽  
Vol 361-363 ◽  
pp. 745-748 ◽  
Author(s):  
Helene Citterio-Bigot ◽  
S. Jakani ◽  
Abdelilah Benmarouane ◽  
Pierre Millet ◽  
Alain Lodini

The aim of this study was to create a nano-structured coating using Plasma Thermal Spraying (PTS). This process consists in introducing pre-agglomerated nanosized particles in a high-temperature and high-velocity gas jet and projected them onto the substrate to form, layer by layer, a nanostructured coating. In order to retain nanometer grain sizes in the deposited coating through specific PTS technologies, a thermal field and velocity distribution in the plasma jet are analytically calculated. A finite element analysis is employed to calculate the thermal field evolution inside the agglomerated particles and the thermal induced internal stress distribution is determined. The parameters determined by the theoretical analysis are used for experimental coatings. The average crystallite size of nano-hydroxyapatite powder was 90nm. After deposit via Plasma Thermal Spraying (PTS) process and followed by a 2 hours heat treatment to reduce amorphous fraction, the experimental deposited coating shows that it retains the nanometer crystallite sizes. The substructure of nanocrystals was evaluated at about 120nm in size. Such a nanocoating may play the role of nucleation site to bone, allowing a faster stabilization of the implant.


Author(s):  
Reza Yavari ◽  
Kevin D. Cole ◽  
Prahalad Rao

Abstract The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatial distribution of heat, called the heat flux or thermal history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the heat flux in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metal AM processes is ascribed to the heat flux in the part. For instance, constrained heat flux because of ill-considered part design leads to defects, such as warping and thermal stress-induced cracking. Existing non-proprietary approaches to predict the heat flux in AM at the part-level predominantly use mesh-based finite element analyses that are computationally tortuous — the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational thermal models to predict the heat flux, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared to finite element analysis techniques, the proposed mesh-free graph theory-based approach facilitates layer-by-layer simulation of the heat flux within a few minutes on a desktop computer. To explore these assertions we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach, with finite element analysis and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume, and (2) simulating the layer-by-layer deposition of three part geometries in a laser powder bed fusion metal AM process with: (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the heat flux predictions from the last two approaches with a commercial solution. From the first study we report that the heat flux trend approximated by the graph theory approach is found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the heat flux trends predicted for the AM parts using graph theory approach agrees with finite element analysis with error less than 15%. More pertinently, the computational time for predicting the heat flux was significantly reduced with graph theory, for instance, in one of the AM case studies the time taken to predict the heat flux in a part was less than 3 minutes using the graph theory approach compared to over 3 hours with finite element analysis. While this paper is restricted to theoretical development and verification of the graph theory approach for heat flux prediction, our forthcoming research will focus on experimental validation through in-process sensor-based heat flux measurements.


1999 ◽  
Author(s):  
Fuyin Song ◽  
Emmanuel O. Ayorinde

Abstract Vibration performance is a critical factor in the design of automotive rearview mirrors. Because of the complexities involved in the structure of the rearview mirror, its mounting location on the vehicle and its operational conditions, design optimization from finite element analysis is a necessary procedure in order to obtain good vibration response and reduce costs. This paper summarizes the results for design optimization and material selection from finite element analysis (FEA) conclusions. The finite element analysis results indicated that design optimization is very important in the final performance of part vibration and deformation. For design innovations that reduce parts count, decrease costs, and preserve or improve product quality, it may be a critical factor to utilize higher performance composites in place of more traditional materials. Several materials are studied with regard to their properties and dynamic performances. The results could help to achieve cost reduction in part design and to obtain design optimization for current and future programs.


2011 ◽  
Vol 179-180 ◽  
pp. 386-391
Author(s):  
Fu Zhao ◽  
Ping Wang ◽  
Yan Jue Gong ◽  
Li Zhang ◽  
Chun Ling Meng

Uncooled infrared bolometer arrays have become mainstream low-cost thermal detector used in applications such as firefighting, security and surveillance, and environment temperature control for food operation. In order to resolve the pixel structure’s stress problem of microbolometer, this paper adopts finite element analysis method to model and analyze the mechanical properties of pixel structure. Several results of the stress and displacement are presented and the influence of structure optimization on the stress is also analyzed quantitatively. The research provides a good foundation and mechanics reference for mechanical design of uncooled microbolometer.


Sign in / Sign up

Export Citation Format

Share Document