Experimental Investigation of Pressure Wave Supercharging for SI Engine
The objective of this paper is to find experimentally the suitable working conditions of a pressure wave supercharger (PWS) for SI engine. A belt-driven CVT was installed in order to drive the rotor of PWS to the appropriate speed regardless of engine speed. The maximum BMEP was achieved by changing speed of the PWS rotor at constant engine speed and throttle open ratio. From the experiment, the appropriate rotor speeds which led to maximum BMEP at every engine speed and throttle open ratio were achieved. The results showed that two power peaks existed during the range of the tested rotor speed. Since the drop in BMEP between these two power peaks was relatively small, the rotor speed range between these points was defined as effective rotor speed. At engine speed of 2000–4000rpm, the effective rotor speed was found at the engine-rotor ratio of 2.5. In addition, the maximum compression efficiency of PWS was 75% at engine speed of 3000rpm and the exhaust gas pressure reduced to the same level of commonly used turbochargers at all engine speed. Furthermore, results of the transient experiment showed that PWS had as good response as the small turbocharger, which was optimized for the tested engine.