internal membrane
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 9)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ryoto Watanabe ◽  
Chihong Song ◽  
Yoko Kayama ◽  
Masaharu Takemura ◽  
Kazuyoshi Murata

Medusavirus, a giant virus, is phylogenetically closer to eukaryotes than the other giant viruses and has been recently classified as an independent species. However, details of its morphology and maturation process in host cells remain unclear. Here, we investigated the particle morphology of medusavirus inside and outside infected cells using conventional transmission electron microscopy (C-TEM) and cryo-electron microscopy (cryo-EM). The C-TEM of amoeba infected with the medusavirus showed four types of particles: empty, DNA-full, and the corresponding intermediates. Time-dependent changes in the proportion and following intracellular localization of these particles suggested a new maturation process for the medusavirus. Empty particles and viral DNAs were produced independently in the cytoplasm and nucleus, respectively, and only empty particles located near the nucleus incorporated the viral DNA into the capsid. All four types of particles were also found outside the cells. The cryo-EM of these particles showed that the intact capsid structure, covered with three different types of spikes, was conserved among all particle types, although with minor size-related differences. The internal membrane exhibited a structural array similar to that of the capsid, interacted closely with the capsid, and displayed open membrane structures in the empty and empty-intermediate particles. This result suggests that the open structures in the internal membrane are used for an exchange of scaffold proteins and viral DNA during the maturation process. This new model of the maturation process of medusavirus provides insight into the structural and behavioral diversity of giant viruses.


2021 ◽  
Author(s):  
Raymond N Burton-Smith ◽  
Hemanth K N Reddy ◽  
Martin Svenda ◽  
Chantal Abergel ◽  
Kenta Okamoto ◽  
...  

Members of Marseilleviridae, one family of icosahedral giant viruses classified in 2012 have been identified worldwide in all types of environments. The virion shows a characteristic internal membrane extrusion at the five-fold vertices of the capsid, but its structural details need to be elucidated. We now report the 4.4 Å cryo-electron microscopy structure of the Melbournevirus capsid. An atomic model of the major capsid protein (MCP) shows a unique cup structure on the trimer that accommodates additional proteins. A polyalanine model of the penton base protein shows internally extended N- and C-terminals, which indirectly connect to the internal membrane extrusion. The Marseilleviruses share the same orientational organisation of the MCPs as PBCV-1 and CroV, but do not appear to possess a protein akin to the ″tape measure″ of these viruses. Minor capsid proteins named PC-β, zipper, and scaffold are proposed to control the dimensions of the capsid during assembly.


2021 ◽  
pp. 119589
Author(s):  
Huang Teik Lay ◽  
Rique Jie En Yeow ◽  
Yunqiao Ma ◽  
Andrew L. Zydney ◽  
Rong Wang ◽  
...  

Parasitology ◽  
2020 ◽  
Vol 147 (14) ◽  
pp. 1614-1628
Author(s):  
P.M. Hine ◽  
D.J. Morris ◽  
C. Azevedo ◽  
S.W. Feist ◽  
G. Casal

AbstractThis paper reviews current knowledge of the structure, genesis, cytochemistry and putative functions of the haplosporosomes of haplosporidians (Urosporidium, Haplosporidium, Bonamia, Minchinia) and paramyxids (Paramyxa, Paramyxoides, Marteilia, Marteilioides, Paramarteilia), and the sporoplasmosomes of myxozoans (Myxozoa – Malacosporea, Myxosporea). In all 3 groups, these bodies occur in plasmodial trophic stages, disappear at the onset of sporogony, and reappear in the spore. Some haplosporidian haplosporosomes lack the internal membrane regarded as characteristic of these bodies and that phylum. Haplosporidian haplosporogenesis is through the Golgi (spherulosome in the spore), either to form haplosporosomes at the trans-Golgi network, or for the Golgi to produce formative bodies from which membranous vesicles bud, thus acquiring the external membrane. The former method also forms sporoplasmosomes in malacosporeans, while the latter is the common method of haplosporogenesis in paramyxids. Sporoplasmogenesis in myxosporeans is largely unknown. The haplosporosomes of Haplosporidium nelsoni and sporoplasmosomes of malacosporeans are similar in arraying themselves beneath the plasmodial plasma membrane with their internal membranes pointing to the exterior, possibly to secrete their contents to lyse host cells or repel haemocytes. It is concluded that these bodies are probably multifunctional within and between groups, their internal membranes separating different functional compartments, and their origin may be from common ancestors in the Neoproterozoic.


2020 ◽  
Vol 101 (9) ◽  
pp. 894-895
Author(s):  
Sari Mäntynen ◽  
Elina Laanto ◽  
Lotta-Riina Sundberg ◽  
Minna M. Poranen ◽  
Hanna M. Oksanen ◽  
...  

Finnlakeviridae is a family of icosahedral, internal membrane-containing bacterial viruses with circular, single-stranded DNA genomes. The family includes the genus, Finnlakevirus, with the species, Flavobacterium virus FLiP. Flavobacterium phage FLiP was isolated with its Gram-negative host bacterium from a boreal freshwater habitat in Central Finland in 2010. It is the first described single-stranded DNA virus with an internal membrane and shares minimal sequence similarity with other known viruses. The virion organization (pseudo T=21 dextro) and major capsid protein fold (double-β-barrel) resemble those of Pseudoalteromonas phage PM2 (family Corticoviridae), which has a double-stranded DNA genome. A similar major capsid protein fold is also found in other double-stranded DNA viruses in the kingdom Bamfordvirae. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Finnlakeviridae, which is available at ictv.global/report/finnlakeviridae.


2020 ◽  
Vol 12 (553) ◽  
pp. eaar8430 ◽  
Author(s):  
Maria V. Selvadurai ◽  
Mitchell J. Moon ◽  
Simon J. Mountford ◽  
Xiao Ma ◽  
Zhaohua Zheng ◽  
...  

Arterial thrombosis causes heart attacks and most strokes and is the most common cause of death in the world. Platelets are the cells that form arterial thrombi, and antiplatelet drugs are the mainstay of heart attack and stroke prevention. Yet, current drugs have limited efficacy, preventing fewer than 25% of lethal cardiovascular events without clinically relevant effects on bleeding. The key limitation on the ability of all current drugs to impair thrombosis without causing bleeding is that they block global platelet activation, thereby indiscriminately preventing platelet function in hemostasis and thrombosis. Here, we identify an approach with the potential to overcome this limitation by preventing platelet function independently of canonical platelet activation and in a manner that appears specifically relevant in the setting of thrombosis. Genetic or pharmacological targeting of the class II phosphoinositide 3-kinase (PI3KC2α) dilates the internal membrane reserve of platelets but does not affect activation-dependent platelet function in standard tests. Despite this, inhibition of PI3KC2α is potently antithrombotic in human blood ex vivo and mice in vivo and does not affect hemostasis. Mechanistic studies reveal this antithrombotic effect to be the result of impaired platelet adhesion driven by pronounced hemodynamic shear stress gradients. These findings demonstrate an important role for PI3KC2α in regulating platelet structure and function via a membrane-dependent mechanism and suggest that drugs targeting the platelet internal membrane may be a suitable approach for antithrombotic therapies with an improved therapeutic window.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Daraius Shroff ◽  
Aniruddha Agarwal ◽  
Indranil Saha ◽  
Kanika Aggarwal ◽  
Suman Grover ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 357 ◽  
Author(s):  
Fujii ◽  
Wada ◽  
Kobayashi

Galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), are the predominant lipid classes in the thylakoid membrane of chloroplasts. These lipids are also major constituents of internal membrane structures called prolamellar bodies (PLBs) and prothylakoids (PTs) in etioplasts, which develop in the cotyledon cells of dark-grown angiosperms. Analysis of Arabidopsis mutants defective in the major galactolipid biosynthesis pathway revealed that MGDG and DGDG are similarly and, in part, differently required for membrane-associated processes such as the organization of PLBs and PTs and the formation of pigment–protein complexes in etioplasts. After light exposure, PLBs and PTs in etioplasts are transformed into the thylakoid membrane, resulting in chloroplast biogenesis. During the etioplast-to-chloroplast differentiation, galactolipids facilitate thylakoid membrane biogenesis from PLBs and PTs and play crucial roles in chlorophyll biosynthesis and accumulation of light-harvesting proteins. These recent findings shed light on the roles of galactolipids as key facilitators of several membrane-associated processes during the development of the internal membrane systems in plant plastids.


2019 ◽  
Vol 60 (6) ◽  
pp. 1224-1238 ◽  
Author(s):  
Sho Fujii ◽  
Noriko Nagata ◽  
Tatsuru Masuda ◽  
Hajime Wada ◽  
Koichi Kobayashi

2018 ◽  
Vol 217 (6) ◽  
pp. 2087-2102 ◽  
Author(s):  
Fred D. Mast ◽  
Thurston Herricks ◽  
Kathleen M. Strehler ◽  
Leslie R. Miller ◽  
Ramsey A. Saleem ◽  
...  

Dynamic control of peroxisome proliferation is integral to the peroxisome’s many functions. The endoplasmic reticulum (ER) serves as a source of preperoxisomal vesicles (PPVs) that mature into peroxisomes during de novo peroxisome biogenesis and support growth and division of existing peroxisomes. However, the mechanism of PPV formation and release from the ER remains poorly understood. In this study, we show that endosomal sorting complexes required for transport (ESCRT)-III are required to release PPVs budding from the ER into the cytosol. Absence of ESCRT-III proteins impedes de novo peroxisome formation and results in an aberrant peroxisome population in vivo. Using a cell-free PPV budding assay, we show that ESCRT-III proteins Vps20 and Snf7 are necessary to release PPVs from the ER. ESCRT-III is therefore a positive effector of membrane scission for vesicles budding both away from and toward the cytosol. These findings have important implications for the evolutionary timing of emergence of peroxisomes and the rest of the internal membrane architecture of the eukaryotic cell.


Sign in / Sign up

Export Citation Format

Share Document