Evolution of Oil and Gas Waste/Soil Remediation Regulations

Author(s):  
L. E. Deuel ◽  
G. H. Holliday

The meaningful United States regulation of onshore oil and gas field waste/soil commenced in the mid 1980’s in response to a series of state, federal, industry and international initiatives. Most initiatives centered on the design, construction and operation of earthen pits used in the exploration and production of oil and gas (E&P). Prior to this time, earthen pits were constructed as needed by the operator and used in all phases of E&P activity. Chief concerns of the regulators were focused on what had gone into pits historically, what was going into them currently and was the E&P exemption excluding high volume E&P wastes from the Resource Conservation and Recovery Act (RCRA) regulations justified. Several investigations, including the comprehensive field study by the Environmental Protection Agency in 1987, determined E&P wastes are ostensibly non-hazardous. EPA concluded regulation of E&P wastes under RCRA Subtitle C was not necessary. To this day there is no U. S. federal regulatory program with exclusive jurisdiction over exempt E&P wastes. Other studies, primarily industry and academic, focusing on land limiting constituents, management practices and pit closure strategies revealed sodium salts and petroleum hydrocarbon in the form of diesel range organics were the primary limiting constituents. One state, Louisiana, adopted the technical aspects of these studies and developed a comprehensive regulation known as Statewide Order 29-B, which was based on the concept of limiting constituents and defined post closure performance standards. These standards limited salinity, sodicity, total metals and total petroleum hydrocarbon (oil & grease) with values varying with respect to landform, land use and closure technique. Other states have adopted some of the concepts and criteria advanced under 29-B but none are as comprehensive. Obviously there is a need to control what goes into pits and how pits should be closed. The industry would best be served by adopting the concepts and standards set forth in the Louisiana 29-B regulation. A few of the provisions could be changed to make it more palatable to industry without sacrificing the protection afforded human and animal health, safety and the environment. Internationally, particularly countries in South America embraced USEPA protocol for testing characteristically hazardous wastes, but 1) without the framework to handle the relatively large volume of non-hazardous E&P waste generated and 2) no regulations or protocols for on-site waste management. Several operators, although partners with state owned oil companies, on their own volition, applied the concepts and standards under Louisiana’s 29-B to rainforests in South America and rice paddies in Indonesia. Canada and European oil and gas producing countries have developed stringent standards not based on science, which favor costly treatment technologies. Generally, these countries prohibit cost effective on-site waste management and closure techniques. This paper traces the evolution of waste/soil remediation within the United States and internationally. We trace the progress as a function of time; the impetus for regulation; and probable future controls.

2005 ◽  
Vol 8 (06) ◽  
pp. 520-527 ◽  
Author(s):  
D.R. Harrell ◽  
Thomas L. Gardner

Summary A casual reading of the SPE/WPC (World Petroleum Congresses) Petroleum Reserves Definitions (1997) and the U.S. Securities and Exchange Commission(SEC) definitions (1978) would suggest very little, if any, difference in the quantities of proved hydrocarbon reserves estimated under those two classification systems. The differences in many circumstances for both volumetric and performance-based estimates may be small. In 1999, the SEC began to increase its review process, seeking greater understanding and compliance with its oil and gas reserves reporting requirements. The agency's definitions had been promulgated in 1978 in connection with the Energy Policy and Conservation Act of 1975 and at a time when most publicly owned oil and gas companies and their reserves were located in the United States. Oil and gas prices were relatively stable, and virtually all natural gas was marketed through long-term contracts at fixed or determinable prices. Development drilling was subject to well-spacing regulations as established through field rules set by state agencies. Reservoir-evaluation technology has advanced far beyond that used in 1978;production-sharing contracts were uncommon then, and probabilistic reserves assessment was not widely recognized or appreciated in the U.S. These changes in industry practice plus many other considerations have created problems in adapting the 1978 vintage definitions to the technical and commercial realities of the 21st century. This paper presents several real-world examples of how the SEC engineering staff has updated its approach to reserves assessment as well as numerous remaining unresolved areas of concern. These remaining issues are important, can lead to significant differences in reported quantities and values, and may result in questions about the "full disclosure" obligations to the SEC. Introduction For virtually all oil and gas producers, their company assets are the hydrocarbon reserves that they own through various forms of mineral interests, licensing agreements, or other contracts and that produce revenues from production and sale. Reserves are almost always reported as static quantities as of a specific date and classified into one or more categories to describe the uncertainty and production status associated with each category. The economic value of these reserves is a direct function of how the quantities are to be produced and sold over the physical or contract lives of the properties. Reserves owned by private and publicly owned companies are always assumed to be those quantities of oil and gas that can be produced and sold at a profit under assumed future prices and costs. Reserves under the control of state-owned or national oil companies may reflect quantities that exceed those deemed profitable under the commercial terms typically imposed on private or publicly owned companies.


2021 ◽  
Vol 3 (1) ◽  
pp. 3-21
Author(s):  
K. O. Iskaziev ◽  
P. E. Syngaevsky ◽  
S. F. Khafizov

This article continues a series of reviews of the worlds oil and gas basins, where active exploration and development of hydrocarbon deposits in superdeep (6 km +) horizons are taking place, as probable analogues of projects in the Caspian megabasin, primarily the Eurasia project. In this regard the Gulf of Mexico is of great interest, since this region is very well studies over such a long history of its development and thus makes it possible to analyze a huge amount of data collected during this time. The Gulf of Mexico includes the deep-water, offshore and coastal parts of three countries the United States, Mexico and Cuba, and is one of the most important oil and gas provinces in the world. Its deposits are represented by various complexes from the Middle Jurassic to modern sediments, with a total thickness of 14,000 m and more. Exploration for hydrocarbons has been going on here for almost 100 years. During this time, various new technologies have been developed and successfully applied, such as forecasting abnormally high reservoir pressure, cyclostratigraphy and seismic facies analysis, characterization of low-resistivity productive reservoirs and the search for ultra-deep hydrocarbon deposits. Of all the variety of objects developed in the Gulf, in the context of the study of deep deposits, the main interest and possible associations with the Caspian megabasin are the deposits of the Norflet Formation of the Upper Jurassic, which are discussed in the main part of this article. Of course, we are not talking about a direct comparison; in particular, the aeolian origin of part of the section makes this object significantly different. Nevertheless, according to the authors, studying it, as well as understanding how a successful project for its development is being implemented right before our eyes, can provide a lot of important information for working in the deep horizons of the Caspian region. The article is divided into two parts. The first examines the geological history of the formation of the Gulf of Mexico Basin, the features of the deep-lying productive complex of the Norflet Formation. The second part provides information about the history of exploration of the Norflet productive complex, characteristics of the main discoveries, as well as the prospects for discoveries of new superdeep deposits in the Norflet Formation within the Gulf of Mexico (sectors of the United States and Mexico). Analysis of the history of the development of this complex by the global player Shell, is very important, as one of the scenarios for the development of deep horizons in other oil and gas basins, incl. Caspian. International Oil Companies are able to mobilize the necessary resources and technology to effectively address this challenge.


2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Isaac Olson

In the last two decades, the search for untapped oil reserves led to many innovations in oil and gas exploration. As new technology continues to open new horizons, oil companies are increasingly able to drill at deeper ocean depths to tap offshore reserves. Offshore drilling poses problems where oil reserves hundreds of miles from shore cross an international boundary line. While American courts typically apply the rule of capture to determine who owns the subsoil resources, international law requires countries to work together to maximize the efficient, safe extraction of the resources. In 2012, the United States and Mexico drafted a treaty that would govern the unitization of an offshore transboundary oil field. Today, Mexico’s energy laws are very different. A new administration threatens to unravel recent liberal reforms, and the United States has become more hostile to Chinese investment in the region. With these political challenges in mind, the treaty is very vague on critical issues, particularly its dispute resolution clause, which the United States and Mexico must strengthen if the treaty is to be effective and shared transboundary resources develop efficiently to the benefit of both nations. The treaty creates a body called the Joint Commission to create much of the treaty’s policy and procedure. In order to maintain good relations and a healthy energy sector, the Joint Commission needs to create subsidiary committees subject to its control and comprised of various experts to ensure the treaty is implemented impartially.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

High-volume hydraulic fracturing combined with horizontal drilling has “revolutionized” the United States’ oil and gas industry by allowing extraction of previously inaccessible oil and gas trapped in shale rock [1]. Although the United States has extracted shale gas in different states for several decades, the United Kingdom is in the early stages of developing its domestic shale gas resources, in the hopes of replicating the United States’ commercial success with the technologies [2, 3]. However, the extraction of shale gas using hydraulic fracturing and horizontal drilling poses potential risks to the environment and natural resources, human health, and communities and local livelihoods. Risks include contamination of water resources, air pollution, and induced seismic activity near shale gas operation sites. This paper examines the regulation of potential induced seismic activity in Oklahoma, USA, and Lancashire, UK, and concludes with recommendations for strengthening these protections.


Sign in / Sign up

Export Citation Format

Share Document