Particle Image Velocimetry Measurements of Wake Flows of Various Bridge Sections

2006 ◽  
Author(s):  
Emanuela Palombi ◽  
Gregory A. Kopp ◽  
Roi Gurka

Using Particle Image Velocimetry (PIV) we investigate the influence of leading and trailing edge geometry on the wake flows of various elongated cylinders in smooth uniform flow. The results present a comparison between the mean wake flows, as well as the vortex shedding activity found to occur in each case. Pressure measurements were recorded on the surface of the cylinders to examine the corresponding fluctuating and mean forces exhibited by each model tested. Significant variations in the wake topology and aerodynamic behaviour of the four cylinder geometries tested were observed.

2011 ◽  
Vol 133 (9) ◽  
Author(s):  
Jack E. Abboud ◽  
Wafaa S. Karaki ◽  
Ghanem F. Oweis

The flow field past a biologically inspired cylindrical model with a cactus-shaped cross section is investigated in a wind tunnel using particle image velocimetry and surface pressure measurements at a biologically relevant Reynolds number of ∼ 2 × 105. For the cactus model, the mean streamwise flow heals faster in its immediate wake, the wake turbulent velocity level is lower, and the surface static pressure has better recovery compared to the circular cylinder model.


2019 ◽  
Vol 22 (7) ◽  
pp. 1769-1782 ◽  
Author(s):  
ZR Shu ◽  
QS Li

This article presents a comprehensive investigation on the separated and reattaching flows over a blunt flat plate with different leading-edge shapes by means of particle image velocimetry and surface pressure measurements. Wind tunnel tests are performed in both smooth and various turbulent flow conditions, and the separated and reattaching flows are examined as a function of Reynolds number ( Re), leading-edge shape, turbulence intensity, and turbulence integral length scale. It is shown through the particle image velocimetry and pressure measurements that the Reynolds number effect is significant regarding the mean vorticity field, but with little effect on the mean velocity field. For the effects of leading-edge shape, the distributions of pressure coefficients respond strongly to the change in leading-edge angle, and both the velocity (streamwise and vertical) and vorticity fields have a clear dependence on the leading-edge shape. For the effects of freestream turbulence, the mean pressure coefficient responds strongly to turbulence intensity, whereas the fluctuating and peak suction pressure coefficients are dependent on both turbulence intensity and integral length scale. The size of the separation bubble contracts aggressively with increasing turbulence intensity, but it remains approximately invariant in response to the change in turbulence scale in the tested range.


2003 ◽  
Vol 478 ◽  
pp. 299-323 ◽  
Author(s):  
RICHARD MILLS ◽  
JOHN SHERIDAN ◽  
KERRY HOURIGAN

Particle image velocimetry (PIV) measurements and flow visualization in a water tunnel show that vortex shedding at the leading and trailing edges of rectangular cylinders can be simultaneously phase-locked to transverse velocity perturbations when the applied perturbation Stp is close to an impinging leading-edge vortex/trailing-edge vortex shedding (ILEV/TEVS) frequency. The transverse perturbations, analogous to β-mode duct acoustic resonances, are generated through harmonic oscillations of the sidewalls. When this occurs, the leading-edge vortices are found always to pass the trailing edge at the same phase in the perturbation cycle regardless of the chord-to-thickness (c/t) ratio. Applying perturbations at an Stp not equal to the natural global frequency also results in phase-locked vortex shedding from the leading edge, and a near wake with a frequency equal to the perturbation frequency. This is consistent with previous experimental findings. However, vortex shedding at the trailing edge is either weaker or non-existent. PIV results and flow visualization showed trailing-edge vortex growth was weaker because leading-edge vortices arrive at the trailing edge at a phase in the perturbation cycle where they interfere with trailing-edge shedding. The frequencies at which trailing-edge vortices form for different c/t ratios correspond to the natural ILEV/TEVS frequencies. As in the case of natural shedding, peaks in base suction occur when the leading-edge vortices pass the trailing edge at the phase in the perturbation cycle (and thus in the leading-edge shedding cycle) that allows strong trailing-edge shedding. This is the reason for the similarity in the Stvs.c/t relationship for three seemingly different sets of experiments.


2018 ◽  
Vol 841 ◽  
pp. 1-27 ◽  
Author(s):  
Leon Vanstone ◽  
Mustafa Nail Musta ◽  
Serdar Seckin ◽  
Noel Clemens

This study investigates the mean flow structure of two shock-wave boundary-layer interactions generated by moderately swept compression ramps in a Mach 2 flow. The ramps have a compression angle of either $19^{\circ }$ or $22.5^{\circ }$ and a sweep angle of $30^{\circ }$. The primary diagnostic methods used for this study are surface-streakline flow visualization and particle image velocimetry. The shock-wave boundary-layer interactions are shown to be quasi-conical, with the intermittent region, separation line and reattachment line all scaling in a self-similar manner outside of the inception region. This is one of the first studies to investigate the flow field of a swept ramp using particle image velocimetry, allowing more sensitive measurements of the velocity flow field than previously possible. It is observed that the streamwise velocity component outside of the separated flow reaches the quasi-conical state at the same time as the bulk surface flow features. However, the streamwise and cross-stream components within the separated flow take longer to recover to the quasi-conical state, which indicates that the inception region for these low-magnitude velocity components is actually larger than was previously assumed. Specific scaling laws reported previously in the literature are also investigated and the results of this study are shown to scale similarly to these related interactions. Certain limiting cases of the scaling laws are explored that have potential implications for the interpretation of cylindrical and quasi-conical scaling.


2007 ◽  
Vol 133 (6) ◽  
pp. 665-676 ◽  
Author(s):  
Dong-Guan Seol ◽  
Tirtharaj Bhaumik ◽  
Christian Bergmann ◽  
Scott A. Socolofsky

Author(s):  
Hervé Bonnard ◽  
Ludovic Chatellier ◽  
Laurent David

An experimental study of vortex shedding on a hydrofoil Eppler 817 was conducted using two-dimensional two components Particle Image Velocimetry. This foil section’s characteristics are adapted for naval applications but sparsely documented. The characterization of the flow modes was realized based on statistical data such as the mean velocity field and the standard deviation of the vertical velocities. The data were acquired at very low Reynolds number which are not often covered for such hydrofoil and at four angles of attack ranging from 2◦ to 30◦. A map of different characteristic flow modes was made for this space of parameters and was used to identify flow configurations exhibiting particular dynamics.


2015 ◽  
Vol 40 (4) ◽  
pp. 475-484 ◽  
Author(s):  
Witold Mickiewicz

AbstractThe paper presents experimental results of the visualization of the nonlinear aeroacoustic sound generation phenomena occurring in organ flue pipe. The phase-locked particle image velocimetry technique is applied to visualize the mixed velocity field in the transparent organ flue pipe model made from Plexiglas. Presented measurements were done using synchronization to the tone generated by the pipe itself sup- plied by controlled air flow with seeding particles. The time series of raw velocity field distribution images show nonlinear sound generation mechanisms: the large amplitude of deflection of the mean flue jet and vortex shedding in the region of pipe mouth. Proper Orthogonal Decomposition (POD) was then applied to the experimental data to separately visualize the mean mass flow, pulsating jet mass flow with vortices and also sound waves near the generation region as well as inside and outside of the pipe. The resulting POD spatial and temporal modes were used to approximate the acoustic velocity field behaviour at the pipe fundamental frequency. The temporal modes shapes are in a good agreement with the microphone pressure signal shape registered from a distance. Obtained decomposed spatial modes give interesting insight into sound generating region of the organ pipe and the transition area towards the pure acoustic field inside the resonance pipe. They can give qualitative and quantitative data to verify existing sound generation models used in Computational Fluid Dynamics (CFD) and Computational Aero-Acoustics (CAA).


2007 ◽  
Vol 580 ◽  
pp. 319-338 ◽  
Author(s):  
SCOTT C. MORRIS ◽  
SCOTT R. STOLPA ◽  
PAUL E. SLABOCH ◽  
JOSEPH C. KLEWICKI

The Reynolds number dependence of the structure and statistics of wall-layer turbulence remains an open topic of research. This issue is considered in the present work using two-component planar particle image velocimetry (PIV) measurements acquired at the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in western Utah. The Reynolds number (δuτ/ν) was of the order 106. The surface was flat with an equivalent sand grain roughness k+ = 18. The domain of the measurements was 500 < yuτ/ν < 3000 in viscous units, 0.00081 < y/δ < 0.005 in outer units, with a streamwise extent of 6000ν/uτ. The mean velocity was fitted by a logarithmic equation with a von Kármán constant of 0.41. The profile of u′v′ indicated that the entire measurement domain was within a region of essentially constant stress, from which the wall shear velocity was estimated. The stochastic measurements discussed include mean and RMS profiles as well as two-point velocity correlations. Examination of the instantaneous vector maps indicated that approximately 60% of the realizations could be characterized as having a nearly uniform velocity. The remaining 40% of the images indicated two regions of nearly uniform momentum separated by a thin region of high shear. This shear layer was typically found to be inclined to the mean flow, with an average positive angle of 14.9°.


Sign in / Sign up

Export Citation Format

Share Document