Particle image velocimetry and visualization of natural and forced flow around rectangular cylinders

2003 ◽  
Vol 478 ◽  
pp. 299-323 ◽  
Author(s):  
RICHARD MILLS ◽  
JOHN SHERIDAN ◽  
KERRY HOURIGAN

Particle image velocimetry (PIV) measurements and flow visualization in a water tunnel show that vortex shedding at the leading and trailing edges of rectangular cylinders can be simultaneously phase-locked to transverse velocity perturbations when the applied perturbation Stp is close to an impinging leading-edge vortex/trailing-edge vortex shedding (ILEV/TEVS) frequency. The transverse perturbations, analogous to β-mode duct acoustic resonances, are generated through harmonic oscillations of the sidewalls. When this occurs, the leading-edge vortices are found always to pass the trailing edge at the same phase in the perturbation cycle regardless of the chord-to-thickness (c/t) ratio. Applying perturbations at an Stp not equal to the natural global frequency also results in phase-locked vortex shedding from the leading edge, and a near wake with a frequency equal to the perturbation frequency. This is consistent with previous experimental findings. However, vortex shedding at the trailing edge is either weaker or non-existent. PIV results and flow visualization showed trailing-edge vortex growth was weaker because leading-edge vortices arrive at the trailing edge at a phase in the perturbation cycle where they interfere with trailing-edge shedding. The frequencies at which trailing-edge vortices form for different c/t ratios correspond to the natural ILEV/TEVS frequencies. As in the case of natural shedding, peaks in base suction occur when the leading-edge vortices pass the trailing edge at the phase in the perturbation cycle (and thus in the leading-edge shedding cycle) that allows strong trailing-edge shedding. This is the reason for the similarity in the Stvs.c/t relationship for three seemingly different sets of experiments.

2006 ◽  
Author(s):  
Emanuela Palombi ◽  
Gregory A. Kopp ◽  
Roi Gurka

Using Particle Image Velocimetry (PIV) we investigate the influence of leading and trailing edge geometry on the wake flows of various elongated cylinders in smooth uniform flow. The results present a comparison between the mean wake flows, as well as the vortex shedding activity found to occur in each case. Pressure measurements were recorded on the surface of the cylinders to examine the corresponding fluctuating and mean forces exhibited by each model tested. Significant variations in the wake topology and aerodynamic behaviour of the four cylinder geometries tested were observed.


Author(s):  
K Anand ◽  
KT Ganesh

The effect of pressure gradient on a separated boundary layer past the leading edge of an airfoil model is studied experimentally using electronically scanned pressure (ESP) and particle image velocimetry (PIV) for a Reynolds number ( Re) of 25,000, based on leading-edge diameter ( D). The features of the boundary layer in the region of separation and its development past the reattachment location are examined for three cases of β (−30°, 0°, and +30°). The bubble parameters such as the onset of separation and transition and the reattachment location are identified from the averaged data obtained from pressure and velocity measurements. Surface pressure measurements obtained from ESP show a surge in wall static pressure for β = −30° (flap deflected up), while it goes down for β = +30° (flap deflected down) compared to the fundamental case, β = 0°. Particle image velocimetry results show that the roll up of the shear layer past the onset of separation is early for β = +30°, owing to higher amplification of background disturbances compared to β = 0° and −30°. Downstream to transition location, the instantaneous field measurements reveal a stretched, disoriented, and at instances bigger vortices for β = +30°, whereas a regular, periodically shed vortices, keeping their identity past the reattachment location, is observed for β = 0° and −30°. Above all, this study presents a new insight on the features of a separation bubble receiving a disturbance from the downstream end of the model, and these results may serve as a bench mark for future studies over an airfoil under similar environment.


2016 ◽  
Vol 804 ◽  
pp. 278-297 ◽  
Author(s):  
J. P. J. Stevenson ◽  
K. P. Nolan ◽  
E. J. Walsh

The free shear layer that separates from the leading edge of a round-nosed plate has been studied under conditions of low (background) and elevated (grid-generated) free stream turbulence (FST) using high-fidelity particle image velocimetry. Transition occurs after separation in each case, followed by reattachment to the flat surface of the plate downstream. A bubble of reverse flow is thereby formed. First, we find that, under elevated (7 %) FST, the time-mean bubble is almost threefold shorter due to an accelerated transition of the shear layer. Quadrant analysis of the Reynolds stresses reveals the presence of slender, highly coherent fluctuations amid the laminar part of the shear layer that are reminiscent of the boundary-layer streaks seen in bypass transition. Instability and the roll-up of vortices then follow near the crest of the shear layer. These vortices are also present under low FST and in both cases are found to make significant contributions to the production of Reynolds stress over the rear of the bubble. But their role in reattachment, whilst important, is not yet fully clear. Instantaneous flow fields from the low-FST case reveal that the bubble of reverse flow often breaks up into two or more parts, thereby complicating the overall reattachment process. We therefore suggest that the downstream end of the ‘separation isoline’ (the locus of zero absolute streamwise velocity that extends unbroken from the leading edge) be used to define the instantaneous reattachment point. A histogram of this point is found to be bimodal: the upstream peak coincides with the location of roll-up, whereas the downstream mode may suggest a ‘flapping’ motion.


Author(s):  
Jong-Seob Han ◽  
Jae-Hung Han

Abstract This study investigated nearwake behaviors around flapping wings moving sideways. A dynamically scaled-up flapping manipulator was installed on a servo-driven towing carriage to give the sideways movement. In the single wing configuration, the wing in the windward side did not encounter any noticeable effects on the aerodynamic characteristics. The wing in the leeward side, on the other hand, experienced a substantial lift augmentation. We found a stretched leading-edge vortex (LEV) on the wing in the leeward side, implying the additional feeding flux into the LEV. In this case, the moving sideways gave a continuous lateral wind, which became the source to maintain the lift augmentation with the less downward component. We also found that the moving sideways rather intensified the interaction between the wake of the wing in the windward side and the contralateral wing, i.e., the wing-wake interaction. Accordingly, the lift augmentation on the wing in the leeward side practically disappeared by the wing-wake interaction. A digital particle image velocimetry for nearwake behaviors found the less developed trailing-edge shear layer and wingroot vortex traces. This implied that the massive downwash induced by the wing in the windward side was the main source to neutralize the lift augmentation on the contralateral wing.


2018 ◽  
Vol 10 (10) ◽  
pp. 168781401880290
Author(s):  
José Omar Dávalos Ramírez ◽  
Juan Carlos García Castrejón ◽  
Francisco Carrillo Pereyra ◽  
Carlos Ponce Corral ◽  
Carlos Felipe Ramírez Espinoza ◽  
...  

In this article, particle image velocimetry studies were conducted in a low-speed wind tunnel to investigate the effects of blowing ratio and blade span in terms of the characteristics of the flow field around a film-cooled blade leading edge. The measurements were performed at 20%, 40%, 60%, and 80% of blade span and blowing ratios of M = 0.5, M = 0.75, M = 1, M = 1.5, and M = 2. Velocity, turbulence intensity, and structure of vortices during the interaction between cooling flow and mainstream were analyzed in detail. The analysis shows a significant increase in mainstream velocity at low blowing ratios, M < 1. Peaks of turbulence were observed at low- and high-span locations. Aerodynamical losses are expected at higher blowing ratios due to the formation of secondary vortices near the outgoing jet. These vortices were a consequence of velocity gradients at this zone.


2012 ◽  
Vol 225 ◽  
pp. 3-7
Author(s):  
Fariba Ajalli ◽  
Mahmoud Mani ◽  
Mozhgan Gharakhanlou

Experimental measurements were conducted on a plunging Eppler 361 strip flapped airfoil to study wake structure in the wake. The heights of strip flap were 2.6% and 3.3% chord. The velocity in the wake was measured by hot-wire anemometry. It was found that the trailing-edge strip had different effects on the plunging wake profile during the oscillation cycle. At initial angle of 0 degree, the trailing-edge strip causes more velocity defect in the oscillation phases of 180º and 270º. At high initial angle 12 degrees, a significant decrease in value of velocity is found at 180º because of the leading edge vortex shedding. The power spectra of dominant frequencies were significantly increased by fitting the strip flap on the plunging airfoil.


Sign in / Sign up

Export Citation Format

Share Document