Particle Image Velocimetry Measurements of the Mean Flow Characteristics in a Bubble Plume

2007 ◽  
Vol 133 (6) ◽  
pp. 665-676 ◽  
Author(s):  
Dong-Guan Seol ◽  
Tirtharaj Bhaumik ◽  
Christian Bergmann ◽  
Scott A. Socolofsky
2007 ◽  
Vol 580 ◽  
pp. 319-338 ◽  
Author(s):  
SCOTT C. MORRIS ◽  
SCOTT R. STOLPA ◽  
PAUL E. SLABOCH ◽  
JOSEPH C. KLEWICKI

The Reynolds number dependence of the structure and statistics of wall-layer turbulence remains an open topic of research. This issue is considered in the present work using two-component planar particle image velocimetry (PIV) measurements acquired at the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in western Utah. The Reynolds number (δuτ/ν) was of the order 106. The surface was flat with an equivalent sand grain roughness k+ = 18. The domain of the measurements was 500 < yuτ/ν < 3000 in viscous units, 0.00081 < y/δ < 0.005 in outer units, with a streamwise extent of 6000ν/uτ. The mean velocity was fitted by a logarithmic equation with a von Kármán constant of 0.41. The profile of u′v′ indicated that the entire measurement domain was within a region of essentially constant stress, from which the wall shear velocity was estimated. The stochastic measurements discussed include mean and RMS profiles as well as two-point velocity correlations. Examination of the instantaneous vector maps indicated that approximately 60% of the realizations could be characterized as having a nearly uniform velocity. The remaining 40% of the images indicated two regions of nearly uniform momentum separated by a thin region of high shear. This shear layer was typically found to be inclined to the mean flow, with an average positive angle of 14.9°.


2001 ◽  
Vol 124 (1) ◽  
pp. 10-18 ◽  
Author(s):  
A. J. Sanders ◽  
J. Papalia ◽  
S. Fleeter

Multi-blade row interactions in an advanced design 1&1/2 stage axial-flow compressor are experimentally investigated at both subsonic and transonic rotor operating conditions using particle image velocimetry (PIV). Transonic rotor operation had a significant impact on the downstream stator unsteady flow field due to phenomena associated with the intra-stator transport of the chopped rotor wake segments. In the stator reference frame, the rotor wakes have a slip velocity relative to the mean flow that causes the low-momentum wake fluid to migrate across the vane passage and accumulate on the stator pressure surface as the chopped wake segments are transported downstream. This results in the generation of counterrotating vortices on each side of the chopped wake segment that convect downstream with the mean flow and act as an additional source of unsteadiness to the vane pressure surface. These interaction phenomena are not evident in the PIV data at the part-speed compressor operating condition due to the much lower velocity deficit and hence slip velocity associated with the subsonic rotor wakes.


Author(s):  
A. J. Sanders ◽  
J. Papalia ◽  
S. Fleeter

Multi-blade row interactions in an advanced design 1&1/2 stage axial-flow compressor are experimentally investigated at both subsonic and transonic rotor operating conditions using particle image velocimetry (PIV). Transonic rotor operation had a significant impact on the downstream stator unsteady flow field due to phenomena associated with the intra-stator transport of the chopped rotor wake segments. In the stator reference frame, the rotor wakes have a slip velocity relative to the mean flow that causes the low momentum wake fluid to migrate across the vane passage and accumulate on the stator pressure surface as the chopped wake segments are transported downstream. This results in the generation of counter-rotating vortices on each side of the chopped wake segment that convect downstream with the mean flow and act as an additional source of unsteadiness to the vane pressure surface. These interaction phenomena are not evident in the PIV data at the part-speed compressor operating condition due to the much lower velocity deficit and hence slip velocity associated with the subsonic rotor wakes.


2006 ◽  
Author(s):  
Renqiang Xiong ◽  
J. N. Chung

Flow structures and pressure drops were investigated in rectangular serpentine micro-channels with miter bends which had hydraulic diameters of 0.209mm, 0.395mm and 0.549mm respectively. To evaluate the bend effect, the additional pressure drop due to the miter bend must be obtained. Three groups of micro-channels were fabricated to remove the inlet and outlet losses. A validated micro-particle image velocimetry (μPIV) system was used to achieve the flow structure in a serpentine micro-channel with hydraulic diameter of 0.173mm. The experimental results show the vortices around the outer and inner walls of the bend do not form when Re&lt;100. Those vortices appear and continue to develop with the Re number when Re&gt; 100-300, and the shape and size of the vortices almost remain constant when Re&gt;1000. The bend loss coefficient Kb was observed to be related with the Re number when Re&lt;100, with the Re number and channel size when Re&gt;100. It almost keeps constant and changes in the range of ± 10% When Re is larger than some value in 1300-1500. And a size effect on Kb was also observed.


Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


2018 ◽  
Vol 841 ◽  
pp. 1-27 ◽  
Author(s):  
Leon Vanstone ◽  
Mustafa Nail Musta ◽  
Serdar Seckin ◽  
Noel Clemens

This study investigates the mean flow structure of two shock-wave boundary-layer interactions generated by moderately swept compression ramps in a Mach 2 flow. The ramps have a compression angle of either $19^{\circ }$ or $22.5^{\circ }$ and a sweep angle of $30^{\circ }$. The primary diagnostic methods used for this study are surface-streakline flow visualization and particle image velocimetry. The shock-wave boundary-layer interactions are shown to be quasi-conical, with the intermittent region, separation line and reattachment line all scaling in a self-similar manner outside of the inception region. This is one of the first studies to investigate the flow field of a swept ramp using particle image velocimetry, allowing more sensitive measurements of the velocity flow field than previously possible. It is observed that the streamwise velocity component outside of the separated flow reaches the quasi-conical state at the same time as the bulk surface flow features. However, the streamwise and cross-stream components within the separated flow take longer to recover to the quasi-conical state, which indicates that the inception region for these low-magnitude velocity components is actually larger than was previously assumed. Specific scaling laws reported previously in the literature are also investigated and the results of this study are shown to scale similarly to these related interactions. Certain limiting cases of the scaling laws are explored that have potential implications for the interpretation of cylindrical and quasi-conical scaling.


Author(s):  
Fabio Ernesto Rodriguez Corredor ◽  
Majid Bizhani ◽  
Ergun Kuru

Polymer drag reduction is investigated using the Particle Image Velocimetry (PIV) technique in fully developed turbulent flow through a horizontal flow loop with concentric annular geometry (inner to outer pipe radius ratio = 0.4). The polymer used was a commercially available partially hydrolyzed polyacrylamide (PHPA). The polymer concentration was varied from 0.07 to 0.12% V/V. The drag reduction is enhanced by increasing polymer concentration until the concentration reaches an optimum value. After that, the drag reduction is decreased with the increasing polymer concentration. Optimum concentration value of PHPA was found to be around 0.1% V/V. Experiments were conducted at solvent Reynolds numbers of 38700, 46700 and 56400. The percent drag reduction was found to be increasing with the increasing Reynolds number. The study was also focused on analyzing the mean flow and turbulence statistics for fully-turbulent flow using the velocity measurements acquired by PIV. Axial mean velocity profile was found to be following the universal wall law close to the wall (i.e., y+ <10), but it deviated from log law results with an increased slope in the logarithmic zone (i.e., y+ >30). In all cases of polymer application, the viscous sublayer (i.e., y+ <10) thickness was found to be higher than that of the water flow. Reynolds shear stress in the core flow region was found to be decreasing with the increase in polymer concentration.


Author(s):  
A Yasar ◽  
B Sahin ◽  
H Akilli ◽  
K Aydin

In this study, the characteristics of flow emerging from the inlet of the intake port in the cylinder were investigated experimentally. A particle image velocimetry (PIV) technique was used to measure the velocity distribution in order to observe and analyse the flow behaviour. High-image-density PIV provided acquisition of patterns of instantaneous and averaged vorticity and velocity, revealing the detail of the flow characteristics in the cylinder cavity. With this measuring technique, it is possible to study the effect of intake valve geometry on the flow behaviours. The results showed that the flow structure changed substantially along the cylinder stroke due to the geometry of the intake valve port.


Sign in / Sign up

Export Citation Format

Share Document