On the Vector-Valued Cauchy Stress 2-Form and Its Stress Rate

Author(s):  
H. Murakami

Using exterior differential forms, basic equations of continuum mechanics are presented in direct notation. To this end, Elie Cartan’s vector-valued Cauchy stress 2-form is introduced. Its Lie derivative along the world line becomes the Truesdell stress rate. In the presentation, the notation adopted by Theodore Frankel (The Geometry of Physics, Cambridge, New York, 1997) is utilized. With the use of exterior differential forms, complicated computations in tensor analyses in curvilinear coordinates are dramatically simplified. As specific examples, the following subjects are presented: (i) Piola transformations of the Cauchy stress 2-form and (ii) simple shear deformation using the Lie derivative of the Cauchy stress 2-form, i.e., the Truesdell stress rate. It is known that under monotonic shear loading, if inappropriate stress-rates are used, shear stress oscillates. With the use of geometrically correct stress-rate, the shear stress monotonically increases. Thereby, the search for an appropriate stress rate reduces to the correct definition of the stress 2-form and the computation of its Lie derivative with respect to velocity.

2003 ◽  
pp. 85-162 ◽  
Author(s):  
D.A. Burton

A pedagogical application-oriented introduction to the cal?culus of exterior differential forms on differential manifolds is presented. Stokes' theorem, the Lie derivative, linear con?nections and their curvature, torsion and non-metricity are discussed. Numerous examples using differential calculus are given and some detailed comparisons are made with their tradi?tional vector counterparts. In particular, vector calculus on R3 is cast in terms of exterior calculus and the traditional Stokes' and divergence theorems replaced by the more powerful exterior expression of Stokes' theorem. Examples from classical continuum mechanics and spacetime physics are discussed and worked through using the language of exterior forms. The numerous advantages of this calculus, over more traditional ma?chinery, are stressed throughout the article. .


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Fei Wang ◽  
Ping Cao ◽  
Yu Chen ◽  
Qing-peng Gao ◽  
Zhu Wang

In order to investigate the influence of the joint on the failure mode, peak shear strength, and shear stress-strain curve of rock mass, the compression shear test loading on the parallel jointed specimens was carried out, and the acoustic emission system was used to monitor the loading process. The joint spacing and joint overlap were varied to alter the relative positions of parallel joints in geometry. Under compression-shear loading, the failure mode of the joint specimen can be classified into four types: coplanar shear failure, shear failure along the joint plane, shear failure along the shear stress plane, and similar integrity shear failure. The joint dip angle has a decisive effect on the failure mode of the specimen. The joint overlap affects the crack development of the specimen but does not change the failure mode of the specimen. The joint spacing can change the failure mode of the specimen. The shear strength of the specimen firstly increases and then decreases with the increase of the dip angle and reaches the maximum at 45°. The shear strength decreases with the increase of the joint overlap and increases with the increase of the joint spacing. The shear stress-displacement curves of different joint inclination samples have differences which mainly reflect in the postrupture stage. From monitoring results of the AE system, the variation regular of the AE count corresponds to the failure mode, and the peak value of the AE count decreases with the increase of joint overlap and increases with the increase of joint spacing.


1956 ◽  
Vol 59 ◽  
pp. 351-359 ◽  
Author(s):  
Alfred Frölicher ◽  
Albert Nijenhuis

Author(s):  
Loring W. Tu

This chapter describes basic forms. On a principal bundle π‎: P → M, the differential forms on P that are pullbacks of forms ω‎ on the base M are called basic forms. The chapter characterizes basic forms in terms of the Lie derivative and interior multiplication. It shows that basic forms on a principal bundle are invariant and horizontal. To understand basic forms better, the chapter considers a simple example. The plane ℝ2 may be viewed as the total space of a principal ℝ-bundle. A connected Lie group is generated by any neighborhood of the identity. This example shows the necessity of the connectedness hypothesis.


2013 ◽  
pp. 219-326
Author(s):  
Erdoğan S. Şuhubi

Author(s):  
ANNALISA BALDI ◽  
BRUNO FRANCHI ◽  
PIERRE PANSU

Abstract In this paper, we prove contact Poincaré and Sobolev inequalities in Heisenberg groups $\mathbb{H}^{n}$ , where the word ‘contact’ is meant to stress that de Rham’s exterior differential is replaced by the exterior differential of the so-called Rumin complex $(E_{0}^{\bullet },d_{c})$ , which recovers the scale invariance under the group dilations associated with the stratification of the Lie algebra of $\mathbb{H}^{n}$ . In addition, we construct smoothing operators for differential forms on sub-Riemannian contact manifolds with bounded geometry, which act trivially on cohomology. For instance, this allows us to replace a closed form, up to adding a controlled exact form, with a much more regular differential form.


Sign in / Sign up

Export Citation Format

Share Document