Nonlinear Behaviors of the Machine-Tool Spindle System Supported by Ball Bearings With Clearance

Author(s):  
S.-H. Gao ◽  
X.-H. Long ◽  
H.-G. Li ◽  
G. Meng

In this effort, the nonlinear dynamics of a machine-tool spindle system supported by ball bearings is investigated. Considering the loss of contact between the inner race and ball in the ball bearing, the system is described by a set of second order nonlinear differential equations with piecewise stiffness and damping. The nonlinear responses of the system exhibit the softening behavior due to the loss of contact. As the initial preload is applied to the spindle system and the balls are fully contacting with the inner race of the bearing, the nonlinear responses of the system switche to the hardening behavior. Due to the 3/2 nonlinearity, resonance are found when the excitation frequency is close to one-third of the first natural frequency, one-half of the first nature frequency, two-third of the first natural frequency, and the first natural frequency. The route of the period-doubling bifurcation to chaos and the tori doubling process to chaos which usually occurs in the impact system are also observed in this spindle-bearing system.

2021 ◽  
Author(s):  
Omar Gaber ◽  
Seyed M. Hashemi

An analytical-experimental investigation of machine tool spindle decay and its effects of the system’s stability lobe diagram (SLD) is presented. A dynamic stiffness matrix (DSM)model for the vibration analysis of the OKADA VM500 machine spindle is developed and is validated against Finite Element Analysis (FEA).The model is then refined to incorporate flexibility of the system’s bearings, originally modeled as simply supported boundary conditions, where the bearings are modeled as linear spring elements.The system fundamental frequency obtained from the modal analysis carried on an experimental setup is then used to calibrate the DSM model by tuning the springs’ constants. The resulting natural frequency is also used to determine the 2D stability lobes diagram (SLD) for said spindle. Exploiting the presented approach and calibrated DSM model it is shown that a hypothetical 10% change in the natural frequency would result in a significant shift in the SLD of the spindle system, which should be taken into consideration to ensure chatter-free machining over the spindle’s life cycle.


2021 ◽  
Author(s):  
Omar Gaber ◽  
Seyed M. Hashemi

An analytical-experimental investigation of machine tool spindle decay and its effects of the system’s stability lobe diagram (SLD) is presented. A dynamic stiffness matrix (DSM)model for the vibration analysis of the OKADA VM500 machine spindle is developed and is validated against Finite Element Analysis (FEA).The model is then refined to incorporate flexibility of the system’s bearings, originally modeled as simply supported boundary conditions, where the bearings are modeled as linear spring elements.The system fundamental frequency obtained from the modal analysis carried on an experimental setup is then used to calibrate the DSM model by tuning the springs’ constants. The resulting natural frequency is also used to determine the 2D stability lobes diagram (SLD) for said spindle. Exploiting the presented approach and calibrated DSM model it is shown that a hypothetical 10% change in the natural frequency would result in a significant shift in the SLD of the spindle system, which should be taken into consideration to ensure chatter-free machining over the spindle’s life cycle.


Sign in / Sign up

Export Citation Format

Share Document