An Embedded Elliptic Nano-Fiber in Anti-Plane Strain Couple Stress Elasticity

Author(s):  
Hossein M. Shodja ◽  
Hamed Haftbaradaran

The application of higher order continuum theories, with size effect considerations, have recently been spread in the micro and nano-scale studies. One famous version of these theories is the couple stress theory. This paper utilizes this theory to study the anti-plane problem of an elliptic nano-fiber, embedded in an infinite medium, both made of centrosymmetric isotropic material. In this framework, a characteristic length appears in the formulation, by which examination of the size effect is possible. This work presents an analytical solution for the proposed problem.

2015 ◽  
Vol 784 ◽  
pp. 80-85
Author(s):  
Behdad Hashemian ◽  
H.M. Shodja ◽  
Azadeh Goodarzi

It is well-known that classical continuum theory has certain deficiencies in predicting the nanoscopic behavior of materials in the vicinity of defects. Couple stress theory is one of the higher order continuum theories which can overcome such difficulties by introducing new characteristic length. An accurate analytical determination of the elastic fields of an embedded circular nano/micro-rigid fiber with damaged interface under remote anti-plane loading in the context of couple stress elasticity is of particular interest.


2015 ◽  
Vol 15 (07) ◽  
pp. 1540025 ◽  
Author(s):  
Li-Na Liang ◽  
Liao-Liang Ke ◽  
Yue-Sheng Wang ◽  
Jie Yang ◽  
Sritawat Kitipornchai

This paper is concerned with the flexural vibration of an atomic force microscope (AFM) cantilever. The cantilever problem is formulated on the basis of the modified couple stress theory and the Timoshenko beam theory. The modified couple stress theory is a nonclassical continuum theory that includes one additional material parameter to describe the size effect. By using the Hamilton's principle, the governing equation of motion and the boundary conditions are derived for the AFM cantilevers. The equation is solved using the differential quadrature method for the natural frequencies and mode shapes. The effects of the sample surface contact stiffness, length scale parameter and location of the sensor tip on the flexural vibration characteristics of AFM cantilevers are discussed. Results show that the size effect on the frequency is significant when the thickness of the microcantilever has a similar value to the material length scale parameter.


Geophysics ◽  
2021 ◽  
pp. 1-64
Author(s):  
Yanqi Wu ◽  
Jianwei Ma

In elastostatics, the scale effect is a phenomenon in which the elastic parameters of a medium vary with specimen size when the specimen is sufficiently small. Linear elasticity cannot explain the scale effect because it assumes that the medium is a continuum and does not consider microscopic rotational interactions within the medium. In elastodynamics, wave propagation equations are usually based on linear elasticity. Thus, nonlinear elasticity must be introduced to study the scale effect on wave propagation. In this work, we introduce one of the generalized continuum theories—couple stress theory—into solid earth geophysics to build a more practical model of underground medium. The first-order velocity-stress wave equation is derived to simulate the propagation of Rayleigh waves. Body and Rayleigh waves are compared using elastic theory and couple stress theory in homogeneous half- space and layered space. The results show that couple stress causes the dispersion of surface waves and shear waves even in homogeneous half-space. The effect is enhanced by increasing the source frequency and characteristic length, despite its insufficiently clear physical meaning. Rayleigh waves are more sensitive to couple stress effect than body waves. Based on the phase-shifting method, it was determined that Rayleigh waves exhibit different dispersion characteristics in couple stress theory than in conventional elastic theory. For the fundamental mode, the dispersion curves tend to move to a lower frequency with an increase in characteristic length l. For the higher modes, the dispersion curves energy is stronger with a greater characteristic length l.


2018 ◽  
Vol 96 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Vikas Sharma ◽  
Satish Kumar

Inner atomic interactions at the micro scale produce new effects that cannot be accounted for by the classical theory of elasticity. To study the impact of the microstructures of the material, generalized continuum theories involving additional microstructural material parameters are preferred. One such microcontinuum theory involving an additional material parameter called internal characteristic length (l) is a consistent couple stress theory. The study of leaky Rayleigh waves generated at the interface of solid half-space with liquid layer is of great importance for quick scanning and imaging of large civil engineering structures. The problem of leaky Rayleigh waves propagating in elastic half-space under liquid loading has been studied in the context of this consistent couple stress theory. Dispersion equations are obtained by developing the mathematical model of the problem. Phase velocity of leaky Rayleigh waves is studied for three different values of characteristic length parameter (l), which is of the order of internal cell size of the material. Effects of thickness of liquid layer are also studied on the phase velocity profiles.


1981 ◽  
Vol 103 (4) ◽  
pp. 275-279 ◽  
Author(s):  
J. F. C. Yang ◽  
R. S. Lakes

Couple stress theory, which admits an internal moment per unit area as well as the usual force per unit area, is a generalization of classical elasticity. Experimentally we have demonstrated the existence of couple stress by measuring the effect of size on apparent stiffness of compact bone in quasi-static torsion. From these measurements, we obtain the characteristic length for bone in couple stress theory.


Sign in / Sign up

Export Citation Format

Share Document