Low Cost Particle Swarm Algorithm Using Surrogate Model Based Pre-Evaluation for Inverse Heat Conduction Analysis

Author(s):  
S. Vakili ◽  
M. S. Gadala

Using internal temperature measurements from inside a solid to determine the initial or boundary conditions or material properties is a common inverse heat conduction problem. These problems are ill-posed in nature and a robust mathematical solution is not available for them. Stochastical search algorithms like Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been found to be very effective in dealing with some of the challenges in solving inverse problems, such as time step size limit and sensitivity to the measurement errors. However, these methods normally require large population size and do not use the gradient information and, therefore, their computational costs are generally higher than their gradient based alternatives. This is especially true when using a computationally expensive high-fidelity method like finite element analysis as the direct solver in the core of the inverse algorithm. The inherent inefficiency of this procedure is even more obvious when we notice that an algorithm like PSO is rank-based, i.e. the actual magnitude of cost function is not important, and only their relative ordering is used. In a typical implementation of PSO, most of the objective function evaluations are discarded, unless when it is improving the local memory of the particle. A computationally cheaper substitute for full analysis methods is using metamodels also known as surrogate models. They construct an approximation to the direct problem using a set of available data and the underlying physics of the problem. In this research, an inexact pre-evaluation of the boundary heat flux components using a simplified physics and data fitting is used to find the more promising solutions, and then an accurate but computationally expensive three-dimensional finite element discretization of the heat conduction problem is applied only to these elite members of the population. The result is an inverse heat conduction analysis method that has the stability and effectiveness of PSO, and at the same time has a much lower computational cost. In this research, we use a sequential implementation of PSO in dealing with the transient boundary heat flux, and a future time step regularization method is used to create a more stable algorithm. The focus of the test cases in this research paper will be the inverse heat conduction problem in the controlled cooling of steel strips on a run-out table, but the algorithm is readily applicable to other applications of inverse heat conduction analysis.

1980 ◽  
Vol 102 (2) ◽  
pp. 168-176 ◽  
Author(s):  
B. R. Bass

The calculation of the surface temperature and surface heat flux from a measured temperature history at an interior point of a body is identified in the literature as the inverse heat conduction problem. This paper presents, to the author’s knowledge, the first application of a solution technique for the inverse problem that utilizes a finite element heat conduction model and Beck’s nonlinear estimation procedure. The technique is applicable to the one-dimensional nonlinear model with temperature-dependent thermophysical properties. The formulation is applied first to a numerical example with a known solution. The example treated is that of a periodic heat flux imposed on the surface of a rod. The computed surface heat flux is compared with the imposed heat flux to evaluate the performance of the technique in solving the inverse problem. Finally, the technique is applied to an experimentally determined temperature transient taken from an interior point of an electrically-heated composite rod. The results are compared with those obtained by applying a finite difference inverse technique to the same data.


1999 ◽  
Vol 121 (3) ◽  
pp. 708-711 ◽  
Author(s):  
V. Petrushevsky ◽  
S. Cohen

A one-dimensional, nonlinear inverse heat conduction problem with surface ablation is considered. In-depth temperature measurements are used to restore the heat flux and the surface recession history. The presented method elaborates a whole domain, parameter estimation approach with the heat flux approximated by Fourier series. Two versions of the method are proposed: with a constant order and with a variable order of the Fourier series. The surface recession is found by a direct heat transfer solution under the estimated heat flux.


2013 ◽  
Vol 21 (5) ◽  
pp. 854-864 ◽  
Author(s):  
Jean-Laurent Gardarein ◽  
Jonathan Gaspar ◽  
Yann Corre ◽  
Stephane Devaux ◽  
Fabrice Rigollet ◽  
...  

2018 ◽  
Vol 40 (3) ◽  
pp. 91-96
Author(s):  
E.N. Zotov ◽  
A.A. Moskalenko ◽  
O.V. Razumtseva ◽  
L.N. Protsenko ◽  
V.V. Dobryvechir

The paper presents an experimental-computational study of the results of using the IQLab program to solve inverse heat conduction problem and restore the surface temperature of cylindrical thermosondes from heat-resistant chromium-nickel alloys while cooling them in liquid media. The purpose of this paper is to verify the correct operation of the IQLab program when restoring the surface temperature of thermosondes with 1-3 thermocouples. The IQLab program is also designed to solve one-dimensional nonlinear direct lines and inverse heat conduction problems with constant initial and boundary conditions specified as a function of time in a tabular form with a constant and variable time step. A finite-difference method is used to solve the heat equation. Experiments were carried out on samples D = 10-50 mm in liquids with different cooling capacities such as aqueous solutions of  NaCl and Yukon-E polymer, rapeseed oil and I-20A mineral oil. For the calculation we used the readings of thermocouples installed at internal points of cylindrical thermosondes. The advantages of solving inverse heat conduction problems with the IQLab program include the possibility of restoring the surface temperature for cylindrical samples with a diameter of 10 mm to 50 mm with practical accuracy according to the indications of a single thermocouple located in the geometrical center of the thermosonde, which simplifies the manufacture of the probe. For larger dimensions with a diameter D ≥ 50 mm, it is necessary to install control intermediate thermocouples and perform additional tests. The solution of inverse heat conduction problems and restoration of the surface temperature of the sample makes it possible to calculate other important characteristics of the cooling process: the heat flux density and the heat transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document