scholarly journals Application of the Finite Element Method to the Nonlinear Inverse Heat Conduction Problem Using Beck’s Second Method

1980 ◽  
Vol 102 (2) ◽  
pp. 168-176 ◽  
Author(s):  
B. R. Bass

The calculation of the surface temperature and surface heat flux from a measured temperature history at an interior point of a body is identified in the literature as the inverse heat conduction problem. This paper presents, to the author’s knowledge, the first application of a solution technique for the inverse problem that utilizes a finite element heat conduction model and Beck’s nonlinear estimation procedure. The technique is applicable to the one-dimensional nonlinear model with temperature-dependent thermophysical properties. The formulation is applied first to a numerical example with a known solution. The example treated is that of a periodic heat flux imposed on the surface of a rod. The computed surface heat flux is compared with the imposed heat flux to evaluate the performance of the technique in solving the inverse problem. Finally, the technique is applied to an experimentally determined temperature transient taken from an interior point of an electrically-heated composite rod. The results are compared with those obtained by applying a finite difference inverse technique to the same data.

Author(s):  
Rakesh Kumar ◽  
Jayesh. P ◽  
Niranjan Sahoo

A procedure to solve inverse heat conduction problem (IHCP) is to derive surface heat flux and temperature from temperature change inside a solid. The method proves to be very useful and powerful when a direct measurement of surface heat flux and temperature is difficult, owing to several working condition. The literature reviewed here discussion one dimensional inverse heat conduction problem. Procedure, criteria, methods and important results of other investigation are briefly discussed.


1992 ◽  
Vol 114 (3) ◽  
pp. 553-557 ◽  
Author(s):  
T. R. Hsu ◽  
N. S. Sun ◽  
G. G. Chen ◽  
Z. L. Gong

This paper presents a finite element algorithm for two-dimensional nonlinear inverse heat conduction analysis. The proposed method is capable of handling both unknown surface heat flux and unknown surface temperature of solids using temperature histories measured at a few discrete point. The proposed algorithms were used in the study of the thermofracture behavior of leaking pipelines with experimental verifications.


2000 ◽  
Author(s):  
M. Khairul Alam ◽  
Rex J. Kuriger ◽  
Rong Zhong

Abstract The quenching process is an important heat treatment method used to improve material properties. However, the heat transfer during quenching is particularly difficult to analyze and predict. To collect temperature data, quench probes have been used in controlled quenching experiments. The process of determination of the heat flux at the surface from the measured temperature data is the Inverse Heat Conduction Problem (IHCP), which is extremely sensitive to measurement errors. This paper reports on an experimental and theoretical study of quenching which is carried out to determine the surface heat flux history during a quenching process by an IHCP algorithm. The inverse heat conduction algorithm is applied to experimental data from a quenching experiment. The surface heat flux is then calculated, and the theoretical curve is compared with experimental results.


Author(s):  
S. Vakili ◽  
M. S. Gadala

Using internal temperature measurements from inside a solid to determine the initial or boundary conditions or material properties is a common inverse heat conduction problem. These problems are ill-posed in nature and a robust mathematical solution is not available for them. Stochastical search algorithms like Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been found to be very effective in dealing with some of the challenges in solving inverse problems, such as time step size limit and sensitivity to the measurement errors. However, these methods normally require large population size and do not use the gradient information and, therefore, their computational costs are generally higher than their gradient based alternatives. This is especially true when using a computationally expensive high-fidelity method like finite element analysis as the direct solver in the core of the inverse algorithm. The inherent inefficiency of this procedure is even more obvious when we notice that an algorithm like PSO is rank-based, i.e. the actual magnitude of cost function is not important, and only their relative ordering is used. In a typical implementation of PSO, most of the objective function evaluations are discarded, unless when it is improving the local memory of the particle. A computationally cheaper substitute for full analysis methods is using metamodels also known as surrogate models. They construct an approximation to the direct problem using a set of available data and the underlying physics of the problem. In this research, an inexact pre-evaluation of the boundary heat flux components using a simplified physics and data fitting is used to find the more promising solutions, and then an accurate but computationally expensive three-dimensional finite element discretization of the heat conduction problem is applied only to these elite members of the population. The result is an inverse heat conduction analysis method that has the stability and effectiveness of PSO, and at the same time has a much lower computational cost. In this research, we use a sequential implementation of PSO in dealing with the transient boundary heat flux, and a future time step regularization method is used to create a more stable algorithm. The focus of the test cases in this research paper will be the inverse heat conduction problem in the controlled cooling of steel strips on a run-out table, but the algorithm is readily applicable to other applications of inverse heat conduction analysis.


1999 ◽  
Vol 121 (3) ◽  
pp. 708-711 ◽  
Author(s):  
V. Petrushevsky ◽  
S. Cohen

A one-dimensional, nonlinear inverse heat conduction problem with surface ablation is considered. In-depth temperature measurements are used to restore the heat flux and the surface recession history. The presented method elaborates a whole domain, parameter estimation approach with the heat flux approximated by Fourier series. Two versions of the method are proposed: with a constant order and with a variable order of the Fourier series. The surface recession is found by a direct heat transfer solution under the estimated heat flux.


Sign in / Sign up

Export Citation Format

Share Document